A Multi-Engine Theorem Prover for a Description Logic of Typicality

Laura Giordano ¹ Valentina Gliozzi ² Nicola Olivetti³ Gian Luca Pozzato ² Luca Violanti⁴

¹DISIT - Universitá Piemonte Orientale - Alessandria, Italy ²Dipartimento di Informatica, Universitá degli Studi di Torino, Italy ³Aix Marseille Univ. - CNRS, ENSAM, Univ. de Toulon - LSIS UMR 7296, Marseille - France ⁴NCR Edinburgh - United Kingdom

AI*IA 2015

Introduction

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

 Two components: TBox—inclusion relations among concepts
 ABox— instances of concepts and roles — properties and relation among individuals

Introduction

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

- Two components:
 - TBox=inclusion relations among concepts
 - 🕨 Platypus 🔚 Mammal
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

- Two components:
 - TBox=inclusion relations among concepts
 - Platypus ⊑ Mammal
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction

Description Logics

Description Logics

- Important formalisms of knowledge representation
- Two key advantages:
 - well-defined semantics based on first-order logic
 - good trade-off between expressivity and complexity
- at the base of languages for the semantic (e.g. OWL)

Knowledge bases

- Two components:
 - TBox=inclusion relations among concepts
 - Platypus ⊑ Mammal
 - ABox= instances of concepts and roles = properties and relations among individuals
 - Platypus(perry)

Introduction

Description Logics

Reasoning

- TBox = taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- integration with nonmonotonic reasoning mechanism to handle defeasible inheritance [BH95, BLW06, DLN⁺98, DNR02, ELST04, Str93]
- all these methods present some difficulties

Our solution

- DLs + typicality operator T for defeasible reasoning in DLs [GGOP13]
- meaning of T: (for any concept C) T(C) singles out the "typical" instances of C
- semantics of T defined by a set of postulates that are a restatement of Kraus-Lehmann-Magidor axioms of preferential logic P

Introduction

Description Logics

Reasoning

- TBox = taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- integration with nonmonotonic reasoning mechanism to handle defeasible inheritance [BH95, BLW06, DLN⁺98, DNR02, ELST04, Str93]
- all these methods present some difficulties

Our solution

- DLs + typicality operator **T** for defeasible reasoning in DLs [GGOP13]
- meaning of T: (for any concept C) T(C) singles out the "typical" instances of C
- semantics of T defined by a set of postulates that are a restatement of Kraus-Lehmann-Magidor axioms of preferential logic P

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Basic notions

- A KB comprises assertions $T(C) \sqsubseteq D$
- **T**(*Student*) \sqsubseteq *FacebookUsers* means "normally, students use Facebook"

• **T** is nonmonotonic

• $C \sqsubseteq D$ does not imply $\mathbf{T}(C) \sqsubseteq \mathbf{T}(D)$

Description Logics of typicality Reasoning in $ALC + T_{min}$ Theorem Proving

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $ALC + T_{min}$

Basic notions

- A KB comprises assertions T(C) ⊑ D
- **T**(*Student*) ⊑ *FacebookUsers* means "normally, students use Facebook"
- T is nonmonotonic
 - $C \sqsubseteq D$ does not imply $\mathbf{T}(C) \sqsubseteq \mathbf{T}(D)$

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich$ $\mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

- ABox:
 - BasketballPlayer(marco)
- Expected conclusions:
 - ⇒ Rich(marco))

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich$ $\mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

- ABox:
 - BasketballPlayer(marco)
- Expected conclusions:
 - ¬Rich(marco)

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich$ $\mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

- ABox:
 - BasketballPlayer(marco)
- Expected conclusions:
 - ¬Rich(marco)

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich \\ \mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

Reasoning ABox: BasketballPlayer(marco) NBAMember(marco) Expected conclusions: Rich(marco)

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich \\ \mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

Reasoning ABox: BasketballPlayer(marco) NBAMember(marco) Expected conclusions: Rich(marco)

Introduction Nonmonotonic semantics $ALC + T_{min}$

The logic $\mathcal{ALC} + T_{min}$

Example

 $\mathbf{T}(BasketballPlayer) \sqsubseteq \neg Rich$ $\mathbf{T}(BasketballPlayer \sqcap NBAMember) \sqsubseteq Rich$

- ABox:
 - BasketballPlayer(marco)
 - NBAMember(marco)
- Expected conclusions:
 - Rich(marco)

Introduction Nonmonotonic semantics $ALC + T_{min}$

Weakness of monotonic semantics

$\mathsf{Logic}\,\,\mathcal{ALC} + \mathsf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

- in the KB of the previous slides:
 - if BasketballPlayer(marco) ∈ ABox, we are not able to:

Introduction Nonmonotonic semantics $ALC + T_{min}$

Weakness of monotonic semantics

Logic $\mathcal{ALC} + \mathbf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

- in the KB of the previous slides:
 - if $BasketballPlayer(marco) \in ABox$, we are not able to:
 - assume that T(BasketballPlayer)(marco)
 - infer that $\neg Rich(marco)$

Introduction Nonmonotonic semantics $ALC + T_{min}$

Weakness of monotonic semantics

Logic $\mathcal{ALC} + \mathbf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

- in the KB of the previous slides:
 - if $BasketballPlayer(marco) \in ABox$, we are not able to:
 - assume that **T**(*BasketballPlayer*)(*marco*)
 - infer that ¬*Rich*(*marco*)

Introduction Nonmonotonic semantics $ALC + T_{min}$

Weakness of monotonic semantics

Logic $\mathcal{ALC} + \mathbf{T}$

- The operator **T** is nonmonotonic, but...
- The logic is monotonic
 - If $KB \models F$, then $KB' \models F$ for all $KB' \supseteq KB$

- in the KB of the previous slides:
 - if $BasketballPlayer(marco) \in ABox$, we are not able to:
 - assume that **T**(*BasketballPlayer*)(*marco*)
 - infer that ¬*Rich*(*marco*)

Introduction Nonmonotonic semantics $\mathcal{ALC} + T_{min}$

The nonmonotonic logic $\mathcal{ALC} + T_{\textit{min}}$ [GGOP13]

Minimal entailment

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - ${\cal M}$ minimal model of KB if there is no ${\cal M}'$ model of KB such that ${\cal M}' < {\cal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all *minimal* models of KB
- Nonmonotonic logic

• KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB

Introduction Nonmonotonic semantics $\mathcal{ALC} + T_{min}$

The nonmonotonic logic $\mathcal{ALC} + T_{min}$ [GGOP13]

Minimal entailment

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - ${\cal M}$ minimal model of KB if there is no ${\cal M}'$ model of KB such that ${\cal M}' < {\cal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all minimal models of KB
- Nonmonotonic logic

• KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB

Introduction Nonmonotonic semantics $\mathcal{ALC} + T_{min}$

The nonmonotonic logic $\mathcal{ALC} + T_{min}$ [GGOP13]

Minimal entailment

- Preference relation among models of a KB
 - $\mathcal{M}_1 < \mathcal{M}_2$ if \mathcal{M}_1 contains less exceptional (not minimal) elements
 - ${\cal M}$ minimal model of KB if there is no ${\cal M}'$ model of KB such that ${\cal M}' < {\cal M}$
- Minimal entailment
 - KB $\models_{min} F$ if F holds in all minimal models of KB
- Nonmonotonic logic

• KB $\models_{min} F$ does not imply KB' $\models_{min} F$ with KB' \supset KB

The calculus $\mathcal{TAB}_{\textit{min}}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

 \bullet then the procedure says $\rm YES$ else the procedure says $\rm NO$

The calculus $\mathcal{TAB}_{\textit{min}}^{\mathcal{ALC}+T}$

Basic ideas

• for deciding whether a query F is minimally entailed from a KB

• two-phase computation:

- Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
- Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

 \bullet then the procedure says $\rm YES$ else the procedure says $\rm NO$

The calculus $\mathcal{TAB}_{\textit{min}}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

 \bullet then the procedure says $\rm YES$ else the procedure says $\rm NO$

The calculus $\mathcal{TAB}_{min}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,
- \bullet then the procedure says $\rm YES$ else the procedure says $\rm NO$

The calculus $\mathcal{TAB}_{min}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

• then the procedure says YES else the procedure says NO

The calculus $\mathcal{TAB}_{min}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

• then the procedure says YES else the procedure says NO

The calculus $\mathcal{TAB}_{min}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,

• then the procedure says YES else the procedure says NO

The calculus $\mathcal{TAB}_{min}^{\mathcal{ALC}+T}$

Basic ideas

- for deciding whether a query F is minimally entailed from a KB
- two-phase computation:
 - Phase 1: verifies whether KB ∪ {¬F} is satisfiable building candidate models
 - Phase 2: checks whether candidate models found in Phase 1 are minimal
- More precisely: if, for each branch **B** built by Phase 1, either:
 - B is closed or
 - the tableau built by Phase 2 is open,
- \bullet then the procedure says YES else the procedure says NO

Basic concepts Ideas Concluding remarks

Design of DysToPic

Basic concepts

- \bullet multi-engine theorem prover for reasoning in $\mathcal{ALC}+\boldsymbol{T}_{\textit{min}}$
- SICStus Prolog implementation of the two-phases tableaux calculus wrapped by a Java interface which relies on the Java RMI APIs for the distribution of the computation
- "worker/employer" paradigm
 - the computational burden for the "employer" can be spread among an arbitrarily high number of "workers" which operate in complete autonomy, so that they can be either deployed on a single machine or on a computer grid

Basic concepts Ideas Concluding remarks

Design of DysToPic

Basic concepts

- multi-engine theorem prover for reasoning in $\mathcal{ALC} + \textbf{T}_{\textit{min}}$
- SICStus Prolog implementation of the two-phases tableaux calculus wrapped by a Java interface which relies on the Java RMI APIs for the distribution of the computation
- "worker/employer" paradigm
 - the computational burden for the "employer" can be spread among an arbitrarily high number of "workers" which operate in complete autonomy, so that they can be either deployed on a single machine or on a computer grid

Basic concepts Ideas Concluding remarks

Design of DysToPic

Basic concepts

- multi-engine theorem prover for reasoning in $\mathcal{ALC}+\boldsymbol{\mathsf{T}}_{\textit{min}}$
- SICStus Prolog implementation of the two-phases tableaux calculus wrapped by a Java interface which relies on the Java RMI APIs for the distribution of the computation
- "worker/employer" paradigm
 - the computational burden for the "employer" can be spread among an arbitrarily high number of "workers" which operate in complete autonomy, so that they can be either deployed on a single machine or on a computer grid

Basic concepts **Ideas** Concluding remarks

Design of DysToPic

Ideas

- in order to prove whether F entails from a KB, Phase 1 can be executed on a machine
- every time that a branch remains open after Phase 1, the execution of Phase 2 for this branch is performed in parallel on a different machine
- meanwhile, the main machine can carry on with the computation of Phase 1
- if a branch remains open in Phase 2, then *F* is not minimally entailed from KB and the computation process can be interrupted early.

Basic concepts **Ideas** Concluding remarks

Design of DysToPic

Ideas

- in order to prove whether *F* entails from a KB, Phase 1 can be executed on a machine
- every time that a branch remains open after Phase 1, the execution of Phase 2 for this branch is performed in parallel on a different machine
- meanwhile, the main machine can carry on with the computation of Phase 1
- if a branch remains open in Phase 2, then *F* is not minimally entailed from KB and the computation process can be interrupted early.

Basic concepts **Ideas** Concluding remarks

Design of DysToPic

Ideas

- in order to prove whether *F* entails from a KB, Phase 1 can be executed on a machine
- every time that a branch remains open after Phase 1, the execution of Phase 2 for this branch is performed in parallel on a different machine
- meanwhile, the main machine can carry on with the computation of Phase 1
- if a branch remains open in Phase 2, then *F* is not minimally entailed from KB and the computation process can be interrupted early.

Basic concepts **Ideas** Concluding remarks

Design of DysToPic

Ideas

- in order to prove whether *F* entails from a KB, Phase 1 can be executed on a machine
- every time that a branch remains open after Phase 1, the execution of Phase 2 for this branch is performed in parallel on a different machine
- meanwhile, the main machine can carry on with the computation of Phase 1
- if a branch remains open in Phase 2, then *F* is not minimally entailed from KB and the computation process can be interrupted early.

Basic concepts **Ideas** Concluding remarks

Design of DysToPic

Ideas

- in order to prove whether *F* entails from a KB, Phase 1 can be executed on a machine
- every time that a branch remains open after Phase 1, the execution of Phase 2 for this branch is performed in parallel on a different machine
- meanwhile, the main machine can carry on with the computation of Phase 1
- if a branch remains open in Phase 2, then *F* is not minimally entailed from KB and the computation process can be interrupted early.

 $\begin{array}{c} \text{Description Logics} \\ \text{Description Logics of typicality} \\ \text{Reasoning in } \mathcal{ALC} + \mathsf{T}_{min} \\ \text{Theorem Proving} \end{array} \\ \begin{array}{c} \text{Balance} \\ \text{Constraints} \end{array}$

Basic concepts Ideas Concluding remarks

The architecture of DysToPic

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToP3.c is better than the competitor in answering that F is not: minimally entailed from KB
 - surprisingly enough, better performances also in case if is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case /F is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F-is not minimally entailed from KB
 - surprisingly enough, better performances also in case if is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case F is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case *F* is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case *F* is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case *F* is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

Fechnologies

- Tableaux rules implemented in SICStus Prolog
- Library se.sics.jasper to combine Java and SICStus Prolog and to decouple Phase 1 and Phase 2
- Concurrency via multithreading and RMI (Java)

- Comparison with a standard implementation PreDeLo
- Promising performances
 - DysToPic is better than the competitor in answering that F is not minimally entailed from KB
 - surprisingly enough, better performances also in case *F* is minimally entailed from KB
- advantages of distributing the computation justify the overhead of the machinery needed for that

Basic concepts Ideas Concluding remarks

References

- F. Baader and B. Hollunder (1995), Embedding defaults into terminological knowledge representation formalisms. JAR, 14(1):149–180.
- P. A. Bonatti, C. Lutz, and F. Wolter (2006). DLs with Circumscription. In Proc. of KR, pages 400-410.
- D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati (2007). Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. Journal of Automated Reasoning, 39(3):385–429.
- F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf (1998). An epistemic operator for description logics. Artificial Intelligence, 100(1-2):225–274.
- F. M. Donini, D. Nardi, and R. Rosati (2002). Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logics (ToCL), 3(2):177–225.
- T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits (2004), Combining Answer Set Programming with Description Logics for the Semantic Web. In Proc. of KR 2004, pages 141–151.
- L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato (2013), A NonMonotonic Description Logic for Reasoning About Typicality. Artificial Intelligence, 195:165 – 202.
- L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato (2015), Semantic characterization of Rational Closure: from Propositional Logic to Description Logics. Artificial Intelligence, 226:1–33.
- U. Straccia (1993), Default inheritance reasoning in hybrid kl-one-style logics. In Proc. of IJCAI'93, pages 676-681.