

Motivation

Coordination in Knowledge-Intensive (KIE) Socio-Technical Systems (STS) complicated by:

- unpredictability "human-in-the-loop"
- scale #components, #users, geographical
- size TB, ..., PB of raw data
- *pace* #interactions, #requests

Need to **re-think** the problem of *managing information and knowledge* from its very foundation.

Goal

Enable **self-organisation** and **adaptiveness** of knowledge:

- inject within a chemically-inspired information-centric coordination model (MoK) distributed collective intelligence
- inspiration from latest theories of cognitive and social action — in particular, *Behavioural Implicit Communication* (BIC)

Molecules of Knowledge (*MoK*) is a **coordination model** promoting self-organisation of information:

- inspiration from biochemical tuple spaces and stigmergic coordination
- two main goals:
 - self-aggregation of information into more complex heaps
 - autonomous diffusion of information toward the interested agents
 - · network of compartments (typle-space like
 - information repositories)
 - seeds (sources of information) autonomously inject atoms (information pieces)
 - atoms undergo autonomous and decentralised
 - aggregate into molecules (composite information chunks)
 - diffuse to neighbourhoods
 - gets reinforced and perturbed by users
 - decay as time flows
 - reactions are influenced by enzymes (reification of users' epistemic actions)
 - and scheduled according to Gillespie's chemical dynamics simulation algorithm

- network of compartments (tuple-space like information repositories)
- seeds (sources of information) autonomously inject atoms (information pieces)
- atoms undergo autonomous and decentralised reactions:
 - aggregate into molecules (composite information chunks)
 - diffuse to neighbourhoods
 - gets reinforced and perturbed by users
 - decay as time flows
- reactions are *influenced* by enzymes (reification of users' *epistemic actions*)
- and scheduled according to Gillespie's chemical dynamics simulation algorithm

BIC

Behavioural implicit communication is a form of *implicit interaction* with no specialised signal conveying the message: the message is the practical behaviour itself

 e.g., *stigmergy* as a special form of BIC: the addressee does not directly perceive the behaviour, but post-hoc *traces* and outcomes of it.

Requirements for a computational environment:

- observability of agents' actions and their traces
- ability to understand actions and their traces, possibly inferring intentions and goals
- ability to understand the effects of activities, so as to opportunistically obtain a desired reaction

Requirements for a **computational environment**:

- observability of agents' actions and their traces
- ability to understand actions and their traces, possibly inferring intentions and goals
- ability to understand the effects of activities, so as to opportunistically obtain a desired reaction

nents as BIC s-envs

A **Shared Smart Environment** (s-env) is a *computational environment* enabling:

- different forms of observability of actions
- awareness of this observability MoK compartments are s-env:
 - they are (possibly) shared working environments
 - reify users' actions in epistemic terms, promoting observability
 - reify traces of actions as environment modifications — amenable to observation as well

- users' *p*
- Reinfor enable I environ
 - the finfor frequency
 - the la

(tracenvirus)
locatenses
oppores
precent
A doi
thus
them

- Enzymes and traces support observation of users' practical actions — by other users and the environment
- Reinforcement and perturbation reactions enable mind-reading and signification on the environment side
 - the former influences relevance of information according to nature and frequency of users actions
 - the latter *influences location, content, etc.* of information

Introducing traces in Mo K...

BIC introduces **tacit messages** to describe the kind of *messages a practical action (and its traces) implicitly sends* to its observers — e.g.:

- presence "Agent A is here". Since an action (trace) is observable, any agent (the environment) becomes aware of A existence, location, etc.
- opportunities "[e1,...,en] is the set of preconditions for doing a". Agents observing A doing a may infer that [e1,...,en] hold, thus, take the opportunity to do a themselves the environment too
- ... [more in the paper] ...

observation of other users and

ation reactions **nification** on the

...to convey BIC tac

Tacit messages may be recognised in many heterogeneous knowledge intensive STS — e.g. Facebook, Twitter, Mendeley, etc.:

- quote/share may convey tacit messages presence, ability, accomplishment
- like/favourite presence, opportunity
- *follow* intention, opportunity
- search presence, intention, opportunity

Accordingly, **perturbation actions** may range from sending discovery messages, to establishing privileged communication channels so as to ease collaborations, etc.

...causing BIC-driven perturbat

Simulated Scenario

Simulation of a *citizen journalism scenario*:

- users share a MoK-coordinated IT platform for retrieving and publishing news stories
- they have personal devices, running the MoK middleware, they use to search the IT platform for relevant information
- searches can spread up to a logical neighbourhood of compartments
- they leave traces the MoK middleware exploits to attract similar information

Early Results

- Unpredictability MoK anticipates users coordination needs based on present actions and its mind-reading and signification abilities
- Scale MoK reactions act only locally, thus selforganisation exploits local information solely
- Size MoK decay mitigates the issue by destroying*
 information as time flows; also, the overhead brought
 by BIC is minimal, since based on information already
 in the system
- Pace reactions execution and BIC-related mechanisms are rather efficient**, mostly due to their local nature
 - * information is never permanently destroyed, see paper refs.
 - ** efficiency strongly depends on the underlying infrastructure

