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Context

» Huge diffusion of digital images in recent years;

» lack of semantic based retrieval systems for images, that is no
complex queries: “a person riding a horse on a meadow”;

» semantic gap between numerical image features and human
semantics;

» need a method that automatically understands the semantic
content of images.

Relevance:

» semantic content based image retrieval via a query language;

» semantic content enrichment with Semantic Web resource.
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Semantic Image Interpretation (SIl) is the task of extracting a
graph representing the image content;
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Semantic Image Interpretation (SIl) is the task of extracting a
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» nodes represent visible and occluded objects in the image and
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Problem Statement
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Semantic Image Interpretation (SII) is the task of extracting a
graph representing the image content;
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Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a
graph representing the image content;
» nodes represent visible and occluded objects in the image and
their properties;
» arcs represent relations between objects;
» alignment between visible object regions and nodes;

> an ontology provides the formal semantics and constraints
that guide the graph construction;
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Aim of the Doctoral Thesis

v

Define a theoretical reference framework for Sll;

v

implementation of a system for SllI;
graph construction guided by mixing:
» numeric information (low-level features of the image);

» symbolic information (high-level constraints available in the
ontology);

v

v

perform system evaluation on a ground truth of semantically
interpreted images.
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State-of-the-art on Sl
Logic-Based Works (2014)

» a first description of the
image (basic object
recognition and their
relations) is given;

» model generation (deduction
or abduction) by exploiting
the ontology.

Neural Networks-based (NN)
works (2015)

» Caption generation;
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State-of-the-art on Sl

Logic-Based Works (2014) Neural Networks-based (NN)
works (2015)

» a first description of the
image (basic object » Caption generation;
recognition and their
relations) is given;

» model generation (deduction
or abduction) by exploiting
the ontology.

Limitations

» Logic-based works: no consideration for low-level features;

» NN works: no formal semantics and a priori knowledge.
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SII Pipeline
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Our Vision of SlI

Finding the maximum of a joint search space composed of
semantic features and image features.




Theoretical Framework

Background Knowledge Labelled picture is a pair
encoded in a Description Logic P = (S, L) where S are segments
ontology O. of the image, L are (weighted)

labels from X.
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The Partial Model

» A picture is a partial view of the real world

M., =
Ontology

A"

Ontology model

partial m@dl@l]
» A partial model Z,, is a structure that can be extended
to a model of O;
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» A partial model Z,, is a structure that can be extended
to a model of O;

» . A partial model of an ontology O is an interpretation
I, = (A%, Ir) of O: there exists a model Z = (AZ, 1) with
AZr € AT and Zr is a restriction of - on AZe.



The Partial Model

» A picture is a partial view of the real world;

Ontology model

partial m@dl@l]
» A partial model Z,, is a structure that can be extended
to a model of O;

» . A partial model of an ontology O is an interpretation
I, = (A%, Ir) of O: there exists a model Z = (AZ, 1) with
AZr € AT and Zr is a restriction of - on AZe.

» A semantically interpreted picture is a triple (P,Z,,G)o
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The Most Plausible Partial Model

Many partial models for a picture
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Searching for the partial model that best fits the picture content,
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i.e. the most plausible partial model.
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The Semantic Image Interpretation Problem

Formalization

» A cost function S assigns a cost to semantically interpreted
pictures (P, Zp, G)o;

» S(P,Z,,G)o expresses the gap between low-level features of
‘P and objects and relations encoded in Z,;

» the most plausible partial model Z; minimizes S:
I; = argmin S(P,Z,,G)o

TpEpO
gcaZpxs

» the semantic image interpretation problem is the
construction of (P,Z;,G)o that minimizes S.
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Case Study: Clustering-Based Cost Function

» Task: part-whole recognition, i.e., discovery complex objects
from their parts;
» part-whole recognition can be seen as a clustering problem;
» parts of the same object tend to be grouped together;
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Case Study: Clustering-Based Cost Function

» Task: part-whole recognition, i.e., discovery complex objects
from their parts;

» part-whole recognition can be seen as a clustering problem;
» parts of the same object tend to be grouped together;

» cost function as a clustering optimisation function.
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» Clustering: grouping a set of input elements into groups
(clusters) such that:
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Case Study: Clustering-Based Cost Function

» Clustering: grouping a set of input elements into groups

(clusters) such that:

Intra-cluster
distance
minimized

)

Inter-cluster
distance
maximized

S

Cd

» clustering solution of (P,Z,,G)o is C ={Cy | d € AT}
where Cy = {G(d") | d’ € A%r, (d,d") € hasPart™};

» d represents the composite object, the centroid of the cluster;
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Case Study: Clustering-Based Cost Function

Mixing numeric and semantic features:

» grounding distance dg(d, d"): the Euclidean distance
between the centroids of G(d) and G(d’);

» semantic distance dp(d, d’) is the shortest path in O:

Muzzle

» if Muzzle(d’), Tail(d"”) then dp(d’, d") = 2;
» if Muzzle(d"), Horse(d) then dp(d’,d) = 1;
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» Inter-cluster distance I":

» Cost function:

§ =g + 60

S(P,Zp,G)o=a-T+(1—-a)-A
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The Clustering Part-Whole Algorithm (CPWA) approximates the
minimum of the cost function.
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The Clustering Part-Whole Algorithm (CPWA) approximates the
minimum of the cost function.
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minimum of the cost function

Labelled| Features
Picture | extraction
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minimum of the cost function
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Picture | extraction
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minimum of the cost function.
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Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the
minimum of the cost function.
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Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the
minimum of the cost function.

Labelled
Picture

Features
extraction

. Semantlc distances w.r.t.
the other segments

face1: <2.3, 45 2.

arm1:<1.3,2,5,3 .. 4>

newlIndividual person1 it
@ © Consistent

Features|Clustering| Parent type, [Consistency
Join (SOM) |model builder| Checking
(]
facel
—> hgsPaits -p hasParts
W arm1 faccg1 arm1 (5
face1arm1

Consistency
Features cf

Inconsistent

person1
o]

@ 0o
face1 arm1

25 /31




Evaluation

Comparing the predicted partial model with the ground truth, two
measures:
» grouping (GRP):

person1 person1

CPWA <::> Ground Truth
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Evaluation

Comparing the predicted partial model with the ground truth, two
measures:
» grouping (GRP):

person1 person1

CPWA <::> Ground Truth
eg3
face 1 g fac ek

» complex-object type prediction (COP):

Person Person
CPWA & <:> Ground Truth
g3 g1

face1 arm‘] face1 arm‘]

» precision, the fraction of predicted pairs that are correct;
» recall, the fraction of correct pairs that are predicted.
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Experiments and Results

Experiments Setting

» Ground truth of 203 manually obtained labelled pictures on
the urban scene domain;

» manually built ontology with basic formalism of meronymy of
the domain;

» task: discovering complex objects from their parts in pictures.

Results

preccrp recarp  Flgrp preccop reccop Flcop

CPWA 0.61 0.89 0.67 0.73 0.75 0.74
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Results
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Experiments and Results

Experiments Setting
» Ground truth of 203 manually obtained labelled pictures on
the urban scene domain;
» manually built ontology with basic formalism of meronymy of
the domain;
» task: discovering complex objects from their parts in pictures.

Results

preccrp recarp  Flgrp preccop reccop  Flcop

CPWA++ 0.67 0.81 0.71 0.71 0.82 0.86
CPWA 0.61 0.89 0.67 0.73 0.75 0.74
Baseline 0.45 0.71 0.48 0.66 0.69 0.66

» Baseline: clustering without semantics;
» CPWA + +: improved version of CPWA;
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Conclusions and Future Work

» Theoretical framework for Sll: partial model that minimizes a
cost function;

» cost function as a clustering optimization function;
» clustering algorithm that approximates the cost function;

» explicitly using semantics improves the results;
» future work:
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Conclusions and Future Work

» Theoretical framework for Sll: partial model that minimizes a
cost function;
» cost function as a clustering optimization function;
» clustering algorithm that approximates the cost function;
» explicitly using semantics improves the results;
» future work:
» integrating of semantic segmentation algorithms;
generalizing to other relations;

'S
» extending the evaluation to a standard dataset;
» using general purposes ontologies;
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