Ontology-Based Semantic Image Interpretation

Ivan Donadello^{1,2} Luciano Serafini (Advisor)¹

¹Fondazione Bruno Kessler, Via Sommarive, 18 I-38123, Trento, Italy ²DISI University of Trento, Via Sommarive, 9 I-38123, Trento, Italy

September 23, 2015

Context

- Huge diffusion of digital images in recent years;
- lack of semantic based retrieval systems for images, that is no complex queries: "a person riding a horse on a meadow";
- semantic gap between numerical image features and human semantics;
- need a method that automatically understands the semantic content of images.

Relevance:

- semantic content based image retrieval via a query language;
- semantic content enrichment with Semantic Web resource.

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

 nodes represent visible and occluded objects in the image and their properties;

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- nodes represent visible and occluded objects in the image and their properties;
- arcs represent relations between objects;

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- nodes represent visible and occluded objects in the image and their properties;
- arcs represent relations between objects;
- alignment between visible object regions and nodes;

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- nodes represent visible and occluded objects in the image and their properties;
- arcs represent relations between objects;
- alignment between visible object regions and nodes;
- an ontology provides the formal semantics and constraints that guide the graph construction;

・ロト ・四ト ・ヨト ・ヨト

- Define a theoretical reference framework for SII;
- implementation of a system for SII;
- graph construction guided by mixing:
 - numeric information (low-level features of the image);
 - symbolic information (high-level constraints available in the ontology);
- perform system evaluation on a ground truth of semantically interpreted images.

State-of-the-art on SII

Logic-Based Works (2014)

- a first description of the image (basic object recognition and their relations) is given;
- model generation (deduction or abduction) by exploiting the ontology.

Neural Networks-based (NN) works (2015)

Caption generation;

State-of-the-art on SII

Logic-Based Works (2014)

- a first description of the image (basic object recognition and their relations) is given;
- model generation (deduction) or abduction) by exploiting the ontology.

Neural Networks-based (NN) works (2015)

Caption generation;

Limitations

- Logic-based works: no consideration for low-level features;
- NN works: no formal semantics and a priori knowledge.

5/31

SII Pipeline

SII Pipeline

SII Pipeline

8/31

Our Vision of SII

Finding the maximum of a joint search space composed of semantic features and image features.

Theoretical Framework

Background Knowledge

encoded in a Description Logic ontology $\mathcal{O}. \label{eq:constraint}$

Labelled picture is a pair $\mathcal{P} = \langle S, L \rangle$ where S are segments of the image, L are (weighted) labels from Σ .

The Partial Model

• A picture is a partial view of the real world;

► A partial model *I_p* is a structure that can be extended to a model of *O*;

The Partial Model

• A picture is a partial view of the real world;

- ► A partial model *I_p* is a structure that can be extended to a model of *O*;
- A partial model of an ontology \mathcal{O} is an interpretation $\mathcal{I}_p = (\Delta^{\mathcal{I}_p}, \mathcal{I}_p)$ of \mathcal{O} : there exists a model $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ with $\Delta^{\mathcal{I}_p} \subseteq \Delta^{\mathcal{I}}$ and \mathcal{I}_p is a restriction of \mathcal{I} on $\Delta^{\mathcal{I}_p}$.

The Partial Model

• A picture is a partial view of the real world;

- ► A partial model *I_p* is a structure that can be extended to a model of *O*;
- A partial model of an ontology \mathcal{O} is an interpretation $\mathcal{I}_{\rho} = (\Delta^{\mathcal{I}_{\rho}}, \cdot^{\mathcal{I}_{\rho}})$ of \mathcal{O} : there exists a model $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with $\Delta^{\mathcal{I}_{\rho}} \subseteq \Delta^{\mathcal{I}}$ and $\cdot^{\mathcal{I}_{\rho}}$ is a restriction of $\cdot^{\mathcal{I}}$ on $\Delta^{\mathcal{I}_{\rho}}$.

► A semantically interpreted picture is a triple $(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_{\mathcal{O}}$;

The Most Plausible Partial Model

Searching for the partial model that best fits the picture content, i.e. the **most plausible partial model**.

Formalization

- ► A cost function S assigns a cost to semantically interpreted pictures (P, I_p, G)_O;
- S(P, I_p, G)_O expresses the gap between low-level features of *P* and objects and relations encoded in I_p;
- the most plausible partial model \mathcal{I}_p^* minimizes \mathcal{S} :

$$\mathcal{I}_{p}^{*} = \underset{\substack{\mathcal{I}_{p} \models_{p}\mathcal{O} \\ \mathcal{G} \subseteq \Delta^{\mathcal{I}_{p} \times S}}}{\operatorname{argmin}} \mathcal{S}(\mathcal{P}, \mathcal{I}_{p}, \mathcal{G})_{\mathcal{O}}$$

► the semantic image interpretation problem is the construction of (P, I^{*}_p, G)_O that minimizes S.

- Task: part-whole recognition, i.e., discovery complex objects from their parts;
- ► part-whole recognition can be seen as a **clustering problem**;
 - parts of the same object tend to be grouped together;

- Task: part-whole recognition, i.e., discovery complex objects from their parts;
- ► part-whole recognition can be seen as a **clustering problem**;
 - parts of the same object tend to be grouped together;

cost function as a clustering optimisation function.

 Clustering: grouping a set of input elements into groups (clusters) such that:

 Clustering: grouping a set of input elements into groups (clusters) such that:

- ► clustering solution of $(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_{\mathcal{O}}$ is $\mathcal{C} = \{C_d \mid d \in \Delta^{\mathcal{I}_p}\}$ where $C_d = \{\mathcal{G}(d') \mid d' \in \Delta^{\mathcal{I}_p}, \langle d, d' \rangle \in \mathsf{hasPart}^{\mathcal{I}_p}\};$
- ► *d* represents the composite object, the **centroid** of the cluster;

イロト イポト イヨト イヨト

Mixing numeric and semantic features:

- ► grounding distance δ_G(d, d'): the Euclidean distance between the centroids of G(d) and G(d');
- ▶ semantic distance $\delta_{\mathcal{O}}(d, d')$ is the shortest path in \mathcal{O} :

- if Muzzle(d'), Tail(d'') then $\delta_{\mathcal{O}}(d', d'') = 2$;
- if Muzzle(d'), Horse(d) then $\delta_{\mathcal{O}}(d', d) = 1$;

► Inter-cluster distance Γ:

Intra-cluster distance Λ:

Cost function:

$$\mathcal{S}(\mathcal{P},\mathcal{I}_p,\mathcal{G})_{\mathcal{O}} = \alpha \cdot \Gamma + (1-\alpha) \cdot \Lambda$$

	Labelled Picture	Features extraction	Features Join	Parent type, model builder		
<u>_</u> →	face1: < arm1: <1	nantic distance ne other segme 2.3, 4.5, 2 6 . <u>3, 2</u> ,5, 3 42 ntroids	s w.r.t. cf			

Evaluation

Comparing the predicted partial model with the ground truth, two measures:

► grouping (GRP):

Evaluation

Comparing the predicted partial model with the ground truth, two measures:

grouping (GRP):

complex-object type prediction (COP):

Э

イロト 不同下 イヨト イヨト

Evaluation

Comparing the predicted partial model with the ground truth, two measures:

► grouping (GRP):

complex-object type prediction (COP):

precision, the fraction of predicted pairs that are correct;

► recall, the fraction of correct pairs that are predicted: 26/31

Experiments Setting

- Ground truth of 203 manually obtained labelled pictures on the urban scene domain;
- manually built **ontology** with basic formalism of meronymy of the domain;
- **task**: discovering complex objects from their parts in pictures.

Results

	$\mathit{prec}_{\mathrm{GRP}}$	$\mathit{rec}_{\mathrm{GRP}}$	$F1_{ m GRP}$	$\mathit{prec}_{\mathrm{COP}}$	$\mathit{rec}_{\mathrm{COP}}$	$F1_{ m COP}$
CPWA	0.61	0.89	0.67	0.73	0.75	0.74

Experiments Setting

- Ground truth of 203 manually obtained labelled pictures on the urban scene domain;
- manually built **ontology** with basic formalism of meronymy of the domain;
- **task**: discovering complex objects from their parts in pictures.

Results

	$\mathit{prec}_{\mathrm{GRP}}$	$\textit{rec}_{\mathrm{GRP}}$	$F1_{ m GRP}$	<i>prec</i> _{COP}	<i>rec</i> _{COP}	$F1_{ m COP}$
CPWA	0.61	0.89	0.67	0.73	0.75	0.74
Baseline	0.45	0.71	0.48	0.66	0.69	0.66

Baseline: clustering without semantics;

Experiments and Results

Experiments Setting

- Ground truth of 203 manually obtained labelled pictures on the urban scene domain;
- manually built **ontology** with basic formalism of meronymy of the domain;
- **task**: discovering complex objects from their parts in pictures.

Results

	$\mathit{prec}_{\mathrm{GRP}}$	$\textit{rec}_{\mathrm{GRP}}$	$F1_{ m GRP}$	$\mathit{prec}_{\mathrm{COP}}$	<i>rec</i> _{COP}	$F1_{\rm COP}$
CPWA++	0.67	0.81	0.71	0.71	0.82	0.86
CPWA	0.61	0.89	0.67	0.73	0.75	0.74
Baseline	0.45	0.71	0.48	0.66	0.69	0.66

- Baseline: clustering without semantics;
- ► CPWA + +: improved version of CPWA;
- 29/31

- Theoretical framework for SII: partial model that minimizes a cost function;
- cost function as a clustering optimization function;
- clustering algorithm that approximates the cost function;
- explicitly using semantics improves the results;
- future work:

- Theoretical framework for SII: partial model that minimizes a cost function;
- cost function as a clustering optimization function;
- clustering algorithm that approximates the cost function;
- explicitly using semantics improves the results;
- future work:
 - integrating of semantic segmentation algorithms;
 - generalizing to other relations;
 - extending the evaluation to a standard dataset;
 - using general purposes ontologies;

Thanks for listening

Questions?

