AI*IA Awards: In Memory of Leo, Lesmo Award for Best Thesis

Surveilling and protecting valuable targets exploiting a spatially uncertain alarm system

Giuseppe De Nittis

Supervisor: Nicola Gatti

Co-Supervisor: Nicola Basilico

Anavilhanas natural reserve (about 4000 Km²)

Flying drone

A spatially uncertain signal

One signal, multiple targets

Security games

The Defender controls resources to protect the environment

The Attacker tries to compromise some areas without being detected

History

Los Angeles, 2008 AAAI, AAMAS

U.S. domestic flights, 2009 AAMAS

Milan, 2015

The model

Target t:

- $\pi(t)$: value
- d(t): penetration time

The alarm system

When a target is attacked, a spatially uncertain signal is generated

The actions

At any stage of the game:

The Defender decides where to go next

The Attacker decides whether to attack a target or to wait

Utilities

$$U({c, t}) = (1, 0)$$

$$U({c, t}) = (1 - \pi(t), \pi(t))$$

Solving the game

The Defender's strategy is common knowledge of the game

We adopt a Stackelberg paradigm, reducing to a maxmin equilibrium

Interactions

The attacker's action

The alarm system

Patrolling Game (PG)

Signal Response Game (SRG)

SRG-v

Interactions

Two phases of the game

Normal patrolling

Signal response

The SRG-v

The two halves of the SRG-v problem

A hard task: SRG-v on arbitrary graphs

INSTANCE: an instance of SRG-v

QUESTION: is there any σ^D such that $g_v \le k$?

k-SRG-v is strongly NP-hard even with |S| = 1.

Covering route

A permutation of targets that specifies the order of first visits (covering shortest paths) such that each target is first-visited before its deadline

Building the game

Complexity: O(nⁿ)

Covering sets

Can we consider covering *sets*?

From $\langle t_1, t_2, t_3 \rangle$ to $\{t_1, t_2, t_3\}$

Complexity: O(2ⁿ)

Approximating SRG-v game value

The optimization version of k-SRG-v is APX-hard even for very simple instances

Our algorithm

We simultaneously build covering sets and the shortest associated covering route

Dynamic programming inspired algorithm: we can compute all the covering routes in $O(2^n)$

A hard task

Solution of the SRG-v

Route Y

Complexity: O(nc)

The Patrolling Game

What to do when no signal is received?

The Attacker can observe the position of the Defender

Stand still

Without false positives and missed detections, if the alarm system covers all the targets, then any patrolling strategy is dominated by the placement in v*

Special instances

There exist Patrolling Games where staying in a vertex, waiting for a signal, and responding to it is the optimal patrolling strategy for D even with a missed detection rate α = 0.5

Experimental campaign

Hard instances: up to 20 targets

Require the computation of an Hamiltonian Path

Normal instances: up to 200 targets

- Low edge density
- Spatial locality: distant targets covered by different signals

Expo: the setting

Expo: the graph

Expo: the solution

Conclusions

Current research: missed detections

Future research: multi-patrolling

Future research: alarm system deployment

Our Team

Nicola Gatti

Giuseppe De Nittis

Nicola Basilico

Thank you!

Our Algorithm: an Example

Computational complexity

The worst-case complexity of the algorithm is

$$O(|T(s)|^2 2^{|T(s)|})$$

since it has to compute proper covering sets up to cardinality |T(s)|.

With annotations of dominances and routes generation, the whole algorithm yields a worst-case complexity of $O(|T(s)|^52^{|T(s)|})$.

Pseudo-code

Algorithm 1 ComputeCovSets (Basic)

```
1: \forall t \in T, k \in \{2, ..., |T|\}, C_t^1 = \{t\}, C_t^k = \emptyset
2: \forall t \in T, c(\lbrace t \rbrace) = \omega_{v,t}^*, c(\emptyset) = \infty
3: for all k \in \{2 ... |T|\} do
4:
          for all t \in T do
               for all Q_t^{k-1} \in C_t^{k-1} do
5:
                   Q^{+} = \{ f \in T \setminus Q_t^{k-1} \mid c(Q_t^{k-1}) + \omega_{t,f}^* \le d(f) \}
6:
7:
                    for all f \in Q^+ do
                        Q_f^k = Q_t^{k-1} \cup \{f\}
 8:
                        U = Search(Q_f^k, C_f^k)
9:
                         if c(U) > c(Q_t^{k-1}) + \omega_{t,f}^* then
10:
                              C_f^k = C_f^k \cup \{Q_f^k\}
11:
                              c(Q_f^k) = c(Q_t^{k-1}) + \omega_{t,f}^*
12:
13:
                         end if
14:
                     end for
15:
               end for
16:
          end for
17: end for
```


Missed detections

v* is the best placement u* is the second best placement

$$(1 - \alpha)(1 - g_{v^*}) > 1 - g_{u^*}$$

Missed detections

v* is the best placement for $\alpha \leq 0.25$

t	π(t)	d(t)	$p(s_1 t)$
t ₁	0.5	1	1.0
t ₂	0.5	3	1.0
t ₃	0.5	2	1.0
t ₄	0.5	2	1.0

Missed detections

v* is the best placement for $\alpha \leq 0.50$

t	π(t)	d(t)	p(s ₁ t)
t ₁	1.0	1	1.0
t ₂	1.0	3	1.0
t ₃	1.0	2	1.0
t ₄	1.0	2	1.0

k-SRG-v is NP-hard

We reduce from Hamiltonian Path.

Given an instance of HP, $G_H = (V_H, E_H)$, we build a k-SRG-v instance as follows:

- V = V_H U {v};
- $E = E_H U \{(v,h), h \text{ in } V_H\}, w_{i,i} = 1;$
- $T = V_H$, $d(t) = |V_H|$, $\pi(t) = 1$;
- $S = \{s\}, p(s|t) = 1;$
- k = 0.

If $g_v = 0$, then T must be a covering set that admits at least one covering route r, which visits every node exactly one time.

Since $T = V_H$, $g_v \le 0$ if and only if G_H admits a Hamiltonian path.

Computing covering sets

Definition: The decision problem COV-SET is defined as:

INSTANCE: an instance of SRG-v with a target set T

QUESTION: is T a covering set for some covering route r?

Theorem: COV-SET is NP-complete.

Security games around the World

