
Operations Research
and Algorithms at
Google

Laurent Perron

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Operations Research @ Google

● Operations Research team based in Paris
● Started ~7 years ago
● Currently, ~12 people
● Mission:

○ Internal consulting: build and help build optimization
applications

○ Tools: develop core optimization algorithms
● A few other software engineers with OR

background distributed in the company

OR-Tools Overview

● https://code.google.com/p/or-tools/
● Open sourced under the Apache License 2.0
● C++, java, Python, and .NET interface
● Known to compile on Linux, Windows, Mac OS X
● Constraint programming + Local Search
● Wrappers around GLPK, CLP, CBC, SCIP, Sulum,

Gurobi, CPLEX
● OR algorithms
● ~200 examples in Python and C++, 120 in C#, 40 in

Java
● Interface to Minizinc/Flatzinc

OR-Tools: Constraint Programming

● Google Constraint programming:
○ Integer variables and constraints
○ Basic Scheduling support
○ Strong Routing Support.
○ No floats, no sets

● Design choices
○ Geared towards Local Search
○ No strong propagations (JC's AllDifferent)
○ Very powerful callback mechanism on search.
○ Custom propagation queue (AC5 like)

OR-Tools: Local Search

● Local search: iterative improvement method
○ Implemented on top of the CP engine
○ Easy modeling
○ Easy feasibility checking for each move

● Large neighborhoods can be explored with
constraint programming

● Local search
● Large neighborhood search
● Default randomized neighborhood
● Metaheuristics: simulated annealing, tabu

search, guided local search

OR-Tools: Algorithms

● Min Cost Flow
● Max Flow
● Linear Sum Assignment
● Graph Symmetries
● Exact Hamiltonian Path
● And more to be implemented as needed

OR-Tools: Linear Solver Wrappers

● Unified API on top of CLP, CBC, GLPK,
SCIP, Sulum, Gurobi, and CPLEX, GLOP.

● On top of our solvers: GLOP (LP), and BOP
(Boolean MIPs)

● Implemented in C++ with Python, java, and
C# wrapping.

● Expose basic functionalities:
○ variables, constraints, reduced costs, dual values,

activities...
○ Few parameters: tolerances, choice of algorithms,

gaps

OR-Tools: Simplex (GLOP)

● Simplex implementation in C++ (25k lines)
○ Coin LP is at least 300k lines of code

● Better than lpsolve, glpk, soplex
● Usually better than Coin LP, except on wide

problems (misses sifting)
● Focus on numerical stability

OR-Tools: (Max)SAT Solver

● Competitive SAT/MaxSAT Solver
● In 2014, should have won industrial, and half

of crafted SAT competition.
● MaxSAT based on core algorithm

OR-Tools: Binary Optimizer (BOP)

● Based on SAT
● + Simplex (Glop)
● + Local Search (inspired from LocalSolver)
● + Large Neighborhood Search

Competitive with CPLEX/Gurobi on binary
models from the MIPLIB (actually better as it
find solutions to more problems)

More on this later

My Job at Google

● Tech Lead of the OR team:
○ Find project, establish collaboration
○ Help setup plan, milestones, deliverables
○ Decide on the technology, implement.

● Implement applications
● Implement technology

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Consulting is hard

Really hard!
● Getting the right problem with the right

people is hard.
● Getting clean data is hard.
● Solving the problem is easy.
● Reporting the result/explaining the

implications is hard
Time spent is 50 / 25 / 5 / 20 %

Convincing the User

You need to prove your anticipated gains to
sign the contract
You need the trust of the client
You need to polish your results (the easy swap
syndrome)
Stability is an issue
Running time/precise modeling are also an
issue
The objective function is never straightforward

Here is the customer description:
 I have a network, each arc has a maximum
capacity.
 I have a set of demand, each demand has a
source, a destination, a monetary value, and a
traffic usage.
 I want to select demands and how to route
them in order to maximize the total value of
routed demands.
On a given arc, the sum of traffic is <= capacity.

A network routing problem

This looks like a multi flow problem
or is it?

value is disconnected from traffic for a given
demand, so we add a knapsack component to
the problem.

Analysis

● Are partially fulfilled demands accepted?
○ if yes, is the gain linear w.r.t. the fulfilled traffic?

● Demands can be split? Capacity is for all
traffic, on per direction?
○ Are the constraints soft or hard?

● Are there side constraints:
○ Max number of demands per arc, per node
○ Symmetric routing
○ Comfort zone on an arc, penalty on congestion
○ Priorities in demands
○ Special cost function, grouping, exclusion...

Question we should ask the client

At this point, you have no idea what a good
solution looks like.

You have no idea what the input format looks
like.

There is no point in starting a complex
optimization model.

Choosing a strategy

As a rule of the thumb, on an optimization
problem, after you are sure of the problem:
● 50% of the time is spent getting clean data
● 10% is done working on the optimization

problem
● 40% of the time is spent in the output part,

getting feedback, qualifying the result

Choosing a strategy - 2

The best strategy going forward is to:
● Create an end to end solution.
● Spent the minimum amount of time needed

to find a solution to the optimization problem.
● Showing the result and learning implicit

constraints.

The minimal optimization problem is often a
greedy algorithm.

Choosing a strategy - 3

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Why focus on 0-1 LPs?

● Many engineers familiar with MIP/LP
● Many applications can easily be modeled as

a 0-1 LPs
● One-line switch between classic MIP solver

and our specialized 0-1 one
● “Easier” for us to do what we had in mind...

Why focus on generic LS and LNS?

● Efficient approach on large problem
● Using Constraint Programming is “hard”
● New applications often require special local moves or

neighborhood to be created

Our intuition: automatically generated moves
and neighborhood from linear binary
representation alone can be good enough

Binary Solver Details

Efficient “extended” SAT solver

● Start with efficient state of the art CDLC
(Conflict Driven Clause Learning) solver

● Add support for pseudo-Boolean constraint
propagation and explain them. Ex:
○ b1 + b2 - 3*b3 + 5*b4 <= 5
○ trail: (b1 true, b2 true, b3 false) => b4 false
○ 1 reason for b3 assignment is clause “~b1 v b3 v ~b4”

“Max-SAT” complete solver

2 main ways to use SAT solver for optimization:
● linear scan (better and better solutions)

○ find a better solution by adding a constraint:
objective < current best objective value

● core-based (better and better lower bounds)
○ Start by constraining all objective variable to their lower cost value.

ex: all objective variable are false.

○ If UNSAT, identify a small core (subset of clauses) to explain this,
relax just enough, and repeat until SAT.

Good first solution strategies

● SAT with many “random” heuristics:
○ variable branching order (in order, reverse, random)
○ branch choice (always true, always false, best

objective, random, …)
○ also try different solver parameters.

● SAT guided by LP: Solve the LP relaxation, use
optimal value to drive branching choices.

Improving feasible solution with LS

One idea is simply to explore one-flip “repairs”
Over-constrain objective so that initially it is the only infeasible constraint and:
1. Pick infeasible constraint (set is incrementally maintained).
2. Explore all the possible way to repair it by flipping 1 variable.
3. Enqueue each repair and propagate using underlying SAT solver.
4. Abort if SAT, otherwise if depth is not too big continue at 1.

Usually we limit the depth to 1,2,3 or 4 one-flip repairs.

The SAT solver can detect conflicts and learn new clauses in the process
(related to probing in SAT/MIP presolve).

Improving feasible solution with LNS

● Fix some variables using current solution
● Use SAT with low deterministic time limit to

try to find a better solution

Notes:
● Various heuristics to choose what to fix (random variables, random

constraints, local neighborhood in var-constraint graph, …).
● We exploit SAT propagation to construct the neighborhood.
● Dynamically adapt the neighborhood size according to the result.

Another “LNS” approach

Use SAT solver with 2 extra constraints:

● Objective < current feasible solution value
● Hamming distance (potentially restricted to a

subset of variables) from current solution is
lower than a constant parameter.

Putting it all together

● Each “Optimizer” can be run with a small
deterministic time limit.

● Main loop picks a random Optimizer to run
for a short time according to its “score”.

● Scores are dynamically updated depending
on the amount of “learned” information on
the problem.

0-1 MIPLIB 2010 results

The “benchmark”

MIPLIB, 59 0-1 linear problems, available at:
http://miplib.zib.de/miplib2010-BP.php

Caveats:
- Only 5 minutes time-limit
- MIPLIB are “hard” problem for MIP

http://miplib.zib.de/miplib2010-BP.php
http://miplib.zib.de/miplib2010-BP.php

Results (short version)

If feasibility is hard, LP relaxation is bad
BOP wins

If LP relaxation is very good, and/or the
problem is nearly unimodular

Gurobi/CPLEX wins

The MIPLIB is biased towards the first case

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

My CP Experience

● Built the OR team in Google:
○ Introduced CP at Google.
○ Google does not care about technology.
○ But they care about testing/quality/security.

● On demand implementation:
○ So much to implement.
○ Constraint Catalog has more than 400 entries.
○ You have to concentrate on what is useful.

Must have

● Very few constraints/expressions.
● Add optionality as a first class concept.
● Debugging/explanations.
● Strong consulting experience

● Performance

Nice to have

● Diagnostic on my code and my model
○ Look at the generated model
○ Compute statistics
○ Profile the model

● Automatic behaviors
○ Automatic Search
○ Automatic LNS
○ Presolve, decomposition

How to gain performance

● Standard techniques
○ Fast algorithms
○ Fast data structures

● Branch and Bound techniques
○ Fast repetitive algorithms
○ Incremental algorithms
○ The fast code is the one that do not run

● Constraint Programming techniques
○ Better propagation
○ Model reinforcement

The Quest for the Perfect Sum

The standard algorithm
Sum(xi) = z
● Sum(min(xi)) <= min(z)
● Sum(max(xi)) >= max(z)

What can we deduce from the bounds of Z?
[0..1] + [0..1] + [0..1] = [0..1] Nothing
[0..1] + [0..1] + [0..10] = [4..7] -> [2..9] for 3rd
term

Back-Propagation of the Sum

● [0..1] + [0..1] + [0..10] = [4..7]
○ Sum of mins: 0 + 0 + 0 = 0
○ Sum of max: 1 + 1 + 10 = 12

● [0..10] = [4..7] - [0..1] - [0..1]
○ min(0..10) >= min(4..7) - max(0..1) - max(0..1)
○ min(0..10) >= min(4..7) - (sum of max) + max(0..10)
○ min(0..10) >= 4 - 12 + 10 = 2
○ thus [0..10] -> [2..10]
○ and [2..10] -> [2..9]

● By default, all 3 terms will be checked.

Complexity of the Sum

Linear between the xi and z, in both directions
How to improve it:
● propagate delta:

○ xi[a + da, b - db] -> sum [zmin+da, zmax-db]
● Divide and conquer on the array

○ tree based split, in nothing to deduce -> complexity
based on the size of the block

○ but, propagation of delta in log(n) instead of constant
time

○ Use diameter optimization, if xi greater than the
slack between the sum of xi and the bound of the z,
it can absorb any reduction.

More work on the sum

If sum is a scalar product sum(ai.xi) = b.z
We can add a gcd constraint

gcd(ai) divides b
if z is constant,

gcd(ai|xi non bound) divides
b*z - ai.xi (xi bound)

If z is not constant, move to left part and
move constants to the right hand side.

Even More Work on the Sum

If sum(ai * bi) = z, ai > 0, bi boolean variables
Then sort ai increasingly,
Start from the end, if bi is unbound:

if ai > zmax - sum min(xi), then bi = 0,
continue

if ai > sum max(xi) - zmin, then bi = 1
 else stop
This is the perfect propagation
Complexity is linear down a branch

The Next Level

Can we achieve arc consistency in the sum?

i.e. :
{1, 5, 6} + [0..2] = {1, 2, 3, 5, 6, 7, 8}?

There are three options:
○ Count the number of supports for each value of each

variable.
○ Use a table constraint (explicit representation of the

graph of the constraint).
○ Use bitset manipulation.

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Failing a project

There are many ways to fail a project for non
technical reasons
● Wrong problem
● No Pain
● Wrong person
● Bad timing
● Moving target
● Bad cost estimate

How to waste your time

● Complex Search Language
○ 2 months of work → ½ % gain

● Random LNS
○ 20 lines of code, 2 hours of work → 2% gain
○ Complex structure with portfolio, learning, deeper

randomization → 6% gain
○ Smart fragment selection → 10% gain
○ Parallelism (4 core 1% gain, 8 core 1.5% gain)

Imagination is limited

● Sports Scheduling, team/opponent matrix
model.

● What search strategy do you use:
○ Focus on constrained team
○ Focus on constrained period
○ Alternate
○ Randomize...

● This is limited, impact kills any of these

Imagination is limited - 2

Car Sequencing
● The problem is nearly killed by a good

heuristics
● Let's try Large Neighborhood Search:
● Fragment is a sequence
● Fragment is a set of vehicles with given

types
● Propagation Guided LNS kills it, in less

effort.

The lure of propagation

● Let's look at Sum of All Different
○ Seems generic
○ Find a good BC propagation algorithm
○ Implement it

● And then you need to test it:
○ Magic Square
○ And that is all (sum → cost, all different →

assignment). They do not mix.

Outline

● Operations Research at Google
● Consulting is Hard
● Binary Optimizer
● Implementing Constraint Programming
● Traps and Pitfalls
● Conclusion

Conclusion on consulting

Validate your model and your objective function
Demonstrate end to end first.
Always be smart when spending your
development time.

Appendix

Problem “easy” for SAT

BOP CPLEX GUROBI

acc-tight4 Optimal, 0.23s Optimal, 27s Optimal, 27s

acc-tight5 Optimal, 1.06s Optimal,
206s

Optimal,
240s

acc-tight6 Optimal, 0.80s Optimal,
110s

Optimal, 90s

ex10 Optimal, 14s (core-sat
2s)

Optimal, 33s Optimal, 38s

ex9 Optimal, 0.8s Optimal, 4s Optimal, 8s

hanoi5 Optimal, 17s (sat 0.83s) --, 300s --, 300s

macrophage Optimal, 15s (core-sat
0.15s)

Optimal,
191s

Optimal, 26s

Problem “easy” for SAT - continued

BOP CPLEX GUROBI

neos18 Optimal, 0.27s Optimal, 24s Optimal, 77s

neos808444 Optimal, 0.47s Optimal, 36s Optimal, 3s

neos-849702 Optimal, 16s --, 300s --, 300s

pb-simp-nonunif Optimal, (=42) 26s (core-
sat 11s)

109, 300s 140, 300s

vpphard Optimal, (=5) 138s (core-
sat 6s)

15, 300s 6, 300s

ns1688347 Optimal, 7s Optimal, 28s Optimal, 18s

Problem with good SAT first solution

BOP CPLEX GUROBI

circ10-3 320 (lb 0) (fs 354 in 60s) --, 300s (lb
140)

--, 300s (lb
140)

ns1696083 47 (lb 34) (fs 55 in 50s) --, 300s (lb
24)

--, 300s (lb
32)

ns894236 17 (lb 14) (fs 18 in 20s) --, 300s (lb
14)

--, 300s (lb
14)

ns894244 16 (lb 15) --, 300s (lb
15)

16 (lb 15)

ns894786 14 (lb 8) --, 300s (lb
18)

--, 300s (lb
18)

ns903616 20 (lb 17) --, 300s (lb
17)

22 (lb 16)

Problem “easy” for MIP

BOP CPLEX GUROBI

air04 57456 (lb 55536) Optimal
is 56137

Optimal, 29s Optimal, 12s

cov1075 20 (lb 18) Optimal is 20 Optimal, 11s Optimal, 9s

harp2 -73467600 Optimal is
-73899770

Optimal, 38s Optimal, 49s

neos-1109824 383 (lb 278) Optimal is
378

Optimal, 27s Optimal, 94s

neos-1337307 -- (lb -203123) Optimal is
-202319

Optimal, 28s Optimal, 55s

neos-777800 Optimal, 231s Optimal, 1s Optimal, 1s

neos-941313 10087 (lb 9361) Optimal is
9361

Optimal, 40s Optimal, 40s

netdiversion 302 (lb 0) Optimal is 242 Optimal,
146s

Optimal,
116s

Problem “easy” for MIP - continued

BOP CPLEX GUROBI

tanglegram1 Optimal, 109s Optimal, 34s Optimal, 6s

tanglegram2 Optimal, 15s Optimal, 0.8s Optimal, 0.8
s

BOP CPLEX GUROBI

mspp16 364 (lb 341) 407 (lb 341) Optimal (=363) in
265s

n3seq24 52800 (lb
52000)

52200 (lb 52000) Optimal (=52200)
in 139s

vpphard2 311 (lb 15) 146 (lb 0) Optimal (=81),
300s

Problem with good LS/LNS (300s)

BOP CPLEX GUROBI

opm2-z10-s2 -33190 (lb
-49308)

0 (lb -48954) -19601 (lb
-49308)

opm2-z11-s8 -42640 (lb
-62971)

0 (lb -62971) -21661 (lb
-62953)

opm2-z12-s14 -63580 (lb
-965157)

0 (lb -91524) -28855 (lb
-91524)

opm2-z12-s7 -65483 (lb
-963536)

0 (lb -90514) -28549 (lb
-90514)

opm2-z7-s2 -10279 (lb
-12879)

Optimal -10280,
174s

Optimal, 80s

Problem with good LS/LNS - cont

BOP CPLEX GUROBI

queens-30 -39 (lb -70) -37 (lb -69) -36 (lb -70)

ramos3 254 (lb 164) 274 (lb 146) 277 (lb 146)

sts405 343 (lb 222) 405 (lb 137) 344 (lb 151)

sts729 642 (lb 325) 729 (lb 249) 647 (lb 259)

t1717 199029 (lb
134532)

208954 (lb
135183)

239381 (lb
135248)

t1722 126762 (lb
98816)

130615 (lb
99990)

151713 (lb 99863)

Problem hard for both (300s)

BOP CPLEX GUROBI

ex10-10pi 250 (lb 221) 250 (lb 222) 245 (lb 222)

go19 88 (lb 77) 84 (lb 80) 84 (lb 81)

iis-100-0-cov 29 (lb 23) 29 (lb 24) 29 (lb 25)

iis-bupa-cov 36 (lb 27) 37 (lb 31) 36 (lb 31)

iis-pima-cov 34 (lb 27) 34 (lb 30) 34 (lb 31)

m100n500k4r1 -23 (lb -25) -24 (lb -25) -24 (lb -25)

methanosarcina 2897 (lb 2124) 2823 (lb 881) 2852 (lb 1019)

n3div36 139000 (lb
114400)

132800 (lb
121028)

130800 (lb
125000)

Problem hard for both (300s) - cont

BOP CPLEX GUROBI

neos-1616732 161 (lb 146) 160 (lb 152) 159 (lb 151)

neos-1620770 9 (lb 8) 9 (lb 7) 9 (lb 8)

neos-631710 230 (lb 10) 490 (lb 188) 203 (lb189)

p6b -60 (lb -90) -62 (lb -68) -62 (lb -68)

protfold -29 (lb -41) -22 (lb -37) -21 (lb -38)

seymour 429 (lb 404) 426 (lb 415) 432 (lb 417)

toll-like 664 (lb 590) 613 (lb 500) 612 (lb 520)

wnq-n100-
mw99-14

503 (lb 186) 268 (lb 231) 269 (lb 231)

