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Democratization of Data 
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Height:	  	  	  	  62	  
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… and apply some standard ML 



IS IT REALLY THAT SIMPLE? 
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NO, e.g., today’s data is relational 
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According to the World Heart Federation, cardiovascular 
disease cost the European Union EURO169 billion in 2003 
and the USA about EURO310.23 billion in direct and 
indirect annual costs. By comparison, the estimated cost 
of all cancers is EURO146.19 billion and HIV 
infections, EURO22.24 billion 

Nat Rev Genet. 2012 May 2;13(6):395-405 



EHRs are dirty and interconnected 

PatientID    Date Prescribed    Date Filled    Physician    Medication    Dose    Duration 
 

      P1            5/17/98            5/18/98         Jones          prilosec       10mg    3 months 

PatientID  SNP1  SNP2   …  SNP500K 
 

      P1         AA      AB                BB 
      P2         AB      BB                AA 

PatientID Gender Birthdate 
 

      P1          M      3/22/63 
 

       

PatientID  Date    Physician  Symptoms      Diagnosis 
 

      P1       1/1/01    Smith     palpitations   hypoglycemic 
 P1       2/1/03    Jones      fever, aches    influenza 

PatientID   Date     Lab Test        Result 

    P1       1/1/01  blood glucose       42 

    P1       1/9/01  blood glucose       ?? 
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… the study and design of intelligent agents that act in 
noisy worlds composed of objects and relations among 
the objects 

Statistical Relational AI … 
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Thanks to you - the Iatlian AI community - for your 
great contributions!  



[Circulation; 92(8), 2157-62, 1995; 
JACC; 43, 842-7, 2004] 

Plaque in 
the left  

coronary 
artery 

Atherosclerosis is the cause of the 
majority of Acute Myocardial Infarctions 
(heart attacks) 

Boosted Statistical Relational Learning 

Kristian Kersting - Democratization of Optimization 

[Kersting, Driessens ICML 2008; Karwath, Kersting, Landwehr ICDM 2008; Natarajan, Joshi, Tadepelli, Kersting, 
Shavlik. IJCAI 2011; Khot, Natarajan, Kersting, Shavlik ICDM 2013, MLJ 2012, Springer Brief 2015, MLJ 2015] 

Algo Likelihood AUC-ROC AUC-PR Time 
Boosting 0.810 0.961 0.930 9s 

MLN 0.730 0.535 0.621 93 hrs 



1.  Graphical models allow to deal with 
uncertainty and to make predictions 

2.  Graphs/Matrices are not enough, we 
need logic/high-level languages 

 

Take-Away Messages 
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STILL NOT CONVINCED? 
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Fast modelling Fast inference 



Take-away Messages 
1.  Graphical models allow to deal with 

uncertainty 
2.  Graphs/Matrices are not enough, we 

need logic /high-level languages 
3.   Tree-Width is not the end of the story 

Kristian Kersting - Democratization of Optimization 





Lifted Loopy Belief Propagation    
= Exploit computational symmetries 

Compress the model 

Run a modified Loopy Belief Propagation 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Coloring the graph 

§  Color nodes according to the  
evidence you have 
§  No evidence, say red 
§  State „one“, say brown 
§  State „two“, say orange 
§  ... 

§  Color factors distinctively 
according  to their equivalence 
classes. For instance, assuming f1 
and f2 to be identical and B appears 
at the  second position within both, 
say blue 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Pass the colors around 

1.  Each factor collects the colors of its neighboring nodes 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Pass the colors around 

1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ ist color signature with its own color 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Pass the colors around 

1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ ist color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Pass the colors around 

1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ ist color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 
4.  Nodes are recolored according to the collected signatures 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Compression: Pass the colors around 

1.  Each factor collects the colors of its neighboring nodes 
2.  Each factor „signs“ ist color signature with its own color 
3.  Each node collects the signatures of its neighboring factors 
4.  Nodes are recolored according to the collected signatures 
5.  If no new color is created stop, otherwise go back to 1 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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A,C 

B 

f1 

Essentially we just compute the  
so-called quotient factor graph 

Compression:  
... and compute the quotient factor graph  

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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A,C 

B 

f1 

Finally, run a modified Loopy Belief Propagation 

§  Nodes are now groups of random variables  
§  The counts ensure that we send the same number of 

message as standard loopy belief propagation 

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan MLJ 2013] 
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Lifted Probabilistic Inference 

Compress the model 

Run a modified inference method 

Kristian Kersting - Democratization of Optimization 

might also be interwined 



The Weisfeiler Lehman 
Algorithm 

It turns out that color passing is well 
known in graph theory 



Weisfeiler-Lehman (WL) Algorithmus  
aka “naive vertex classification” 

§  Basic subroutine for GI testing 
§  Computes LP-relaxations of GA-ILP,                    

aka. fractional automorphisms 
§  Quasi-linear running time                                  

O((n+m)log(n)) when using                      
asynchronous updates [Berkholz, Bonsma, Grohe ESA 2013] 

§  Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC 2008] 

§  Can be extended to weighted graphs/real-valued 
matrices [Grohe, Kersting, Mladenov, Selman ESA 2014] 

§  Actually a Frank-Wolfe optimizer and can be 
viewed as recursive spectral clustering             
[Kersting, Mladenov, Garnett, Grohe AAAI 2014] 

 

Kristian Kersting - Democratization of Optimization 



From Factor Graphs to Graphs 

Encode the factor colors into the node colors 
 

 
 
Then run Weisfeiler Lehman / Color Passing just on 
the graph 
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Instead of looking at AI 
through the glasses of 

probabilities over possible 
worlds, we may also approach 

it using optimization 



Compressing Linear Programs 

[Mladenov, Ahmadi, Kersting AISTATS 2012, Grohe, Kersting, Mladenov, Selman ESA 2014, 
Kersting Mladenov, Tokmatov AIJ 2015] 

Kristian Kersting - Democratization of Optimization 

(1)   Reduce the LP by running WL on the LP-Graph  
(2)   Run any solver on the (hopefully) smaller LP 

quasi-linear overhead 
that may result in 

exponential speed up 



DENSE VS. SPARSE IS NOT 
ENOUGH, SOLVERS NEED TO 
BE AWARE OF SYMMETRIES 

As also noted by Stephen Boyd 

Kristian Kersting - Democratization of Optimization 



Why does this work? 

Feasible region  
of LP and the 
objective vectors 

Span of the 
fractional auto-
morpishm of the LP 

Projections of the 
feasible region onto 
the span of the 
fractional auto-
morphism 



Compute Equitable 
Partition (EO) of 
the LP using WL 

Intuitively, we group together variables 
resp. constraints that interact in the 
very same way in the LP.  

[Mladenov, Ahmadi, Kersting AISTATS 2012, Grohe, Kersting, Mladenov, Selman ESA 2014, 
Kersting Mladenov, Tokmatov AIJ 2015] 
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using$WL$

IntuiCvely,$we$group$together$variables$
resp.$constraints$that$interact$in$the$
very$same$way$in$the$LP.$
$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP
and the objective vector (in pink); (b) the span of the fractional automorphism of the LP
(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the
fractional automorphism.

5.2. Equitable Partitions and Fractional Automorphisms

Let L = (A,b, c) be an LP withA 2 Rm⇥n, that is, we havem constraints
and n variables. In the following, we aim to partition the variables and
constraints into mutually-exclusive classes, which behave identically. Thus
we define a partition of the LP to be the set P = {P1, . . . , Pp

;Q1, . . . , Qq

},
where the sets [p

i=1Pi

= {1, . . . , n} , P
i

\P
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= {1, . . . ,m} , Q
j

\Q
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= ;, partition the constraints of the
LP into (equivalence) classes. Hence, we also require that P

i

\Q
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= ; for all
appropriate i, j.

We say that a partition P = {P1, . . . , Pp

;Q1, . . . , Qq

} of L = (A,b, c) is
equitable if the following conditions hold.

i. For any two variables i, j in the same class P , c
i

= c
j

. For any two
constraints i, j in the same class Q, b
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= b
j

;

ii. For any two variables i, j in the same class P , and for any constraint
class Q and real number c:

|{k 2 Q | A
ik

= c}| = |{l 2 Q | A
jl

= c}| .
Analogously, for any two constraints i, j in the same class Q, and for
any constraint class P and real number c:

|{k 2 P | A
ki

= c}| = |{l 2 P | A
lj

= c}| .
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|{k 2 Q | Aik = c}| = |{l 2 Q | Ajl = c}|

|{k 2 P | Aki = c}| = |{l 2 P | Alj = c}|

If$we$fix$any$class$of$constraints$Q,$then$the$
number$of$constraints$in$Q$where$an$LP$
variable$i$in$P$parCcipates$with$coefficient$c$
should$be$equal$for$all$other$j$in$P.$$$

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

Frac+onal$Automorphsims$of$LPs$
The$EP$induces$an$fracConal$automorphism$of$
the$coefficient$matrix$
$
$
where$$$$$$$$$$and$$$$$$$$$$are$doubly6stochas+c$
matrices$(relaxed$form$of$automorphism).$

XQA = AXP

XQ XP

(XP )ij =

(
1/|P | if both vertices i, j are in the same P ,

0 otherwise.

(XQ)ij =

(
1/|Q| if both vertices i, j are in the same Q,

0 otherwise

Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$is$feasible,$then$$$$$$$$$$$$$is$feasible,$too.$$
By$inducCon,$one$can$show$that$lec7mulCplying$with$a$
doubly7stochasCc$matrix$preserves$direcCons$of$
inequaliCes.$Hence,$$

$
$

x XPx

Ax  b ) XQAx  XQb , AXPx  b

Kristian Kersting - Democratization of Optimization 



Fractional Automorphisms of LPs 

The EP induces a fractional automorphism 
of the coefficient matrix A 
 
 
 
where XQ and Xp are doubly-stochastic 
matrixes (relaxed form of automorphism) 

Kristian Kersting - Democratization of Optimization 
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If$$$$$$$is$op+mal,$then$$$$$$$$$$$$$$is$op+mal,$too.$
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XPx
⇤
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T
x

cTXP = cT

What$have$we$established$so$far?$

Instead$of$considering$the$original$LP$$
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it$is$sufficient$to$consider$
$
$

i.e.$we$„average“$parts$of$the$polytop.$$$$
$

(A,b, c)

(AXP ,b,XP
T c)

But$why$is$this$dimensionality$reduc+on?$

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
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BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

XP

XP = BBT

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
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Since$the$column$space$of$B$is$equivalent$to$the$
span$of$$$$$$$$$,$it$is$actually$sufficient$to$consider$
only$$
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(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

(ABP ,b,B
T
P c)

XP

XP = BBT
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Figure 5: Experimental illustration (for ease of compari-
son the first three plots have the same scales). From top
to bottom, from left to right: (a) Comparison (domain
size vs. end-to-end running time) of solving LPs using
GLPK (ground, fully lifted, and reparametrization). The
first block of domain sizes (5, 15, 25, 50) are from the
friends-smoker MLN; the second block (5, 10, . . . , 50) is
on the CORA MLN. (b) Performance of MPLP (ground vs.
reparametrization) on the same MLNs (same block struc-
ture). (c) Comparison (domain size vs. end-to-end running
time) of TRW and MPLP by reparametrization on CORA.
(d,e) Model sizes for exact evidence (“f”) and approxima-
tions of ranks 100 to 20 and running times.

To this aim we implemented the reparametrization ap-
proach on a single Linux machine (4 ⇥ 3.4 GHz cores, 32
GB main memory) using Python and C/C++. For evalu-
ation we considered three sets of MRFs. One was gener-
ated from grounding a modified version of a Markov Logic
Network (MLN) used for entity resolution on the CORA
dataset. Five different MRFs were generated by ground-
ing the model for 5, 10, 20, 30, 40 and 50 entities, hav-
ing 960, 4081, 13933, 27850, 4699 and 76274 factors re-
spectively. The second set was generated from a pairwise
version of the friends-smokers MLN [4] for 5, 15, 25 and
50 people, having 190, 1620, 4450 and 17650 factors. The
third set considers a simple fr(X, Y) ) (sm(X) , sm(Y))

rule (converted to a pairwise MLN) where we used the
link common observations from the “Cornell” dataset as
evidence for fr. Then we computed different low-rank ap-
proximations of the evidence using [23] .

In all cases, there were only few additional factors due
to treating double edges. What is more interesting are the
running times and overall performances. Fig. 5(a) shows
the end-to-end running time for solving the corresponding
ground, (fully) lifted, and reparametrized LPs using GLPK.
As one can see, reparametrization is competitive to lifted
linear programming (LLP) in time. Actually, it can even
save time since it runs directly on the factor graph and

not on the LP matrix — which is larger than the factor
graph — for discovering symmetries. Moreover, in all cases
the same objective was achieved, that is, reparametriza-
tion does not sacrifice quality. In turn, question (Q1) can
clearly be answered affirmatively. Fig. 5(b) summarizes the
performance of MPLP on the reparametrized models. As
one can see, MPLP can be significantly faster than LLP
for solving MAP-LPs without sacrificing the objective; it
was always identical to the LP solutions. To illustrate than
one may also run other LP-based message-passing solvers,
Figs. 5(c) summarizes the performance of TRW on CORA.
As one can see, lifting TRW by reparametrization is pos-
sible and differences in time are likely due to initializa-
tion, stopping criterion, etc. In any case, question (Q2) can
clearly be answered affirmatively. All results so far show
that lifted LP-based MP solvers can be significantly faster
than generic LP solvers. Figs. 5(d,e) summarize the results
for low-rank evidence approximation. As one can see in
(d), significant reduction in model size can be achieved
even at rank 100, which in turn can lead to faster MPLP
running times (e). For each low-rank model, the ground
and the reparametrized MPLP achieved the same objective.
Plot (e), however, omits the time for performing BMF. It
can be too costly to first run BMF canceling the benefits
of lifted LP-based inference (in contrast to exact inference
as in [23]). Nevertheless, w.r.t. (Q3) these results illustrate
that evidence approximation can result in major speed-ups.

5 CONCLUSIONS

In this paper, we proved that lifted MAP-LP inference in
MRFs with symmetries can be reduced to MAP-LP infer-
ence in standard models of reduced size. In turn, we can use
any off-the-shelf MAP-LP inference algorithm — in partic-
ular approaches based on message-passing — for lifted in-
ference. This incurs no major overhead: for given evidence,
the reduced MRF is at most twice as large than the corre-
sponding fully lifted MRF. By plugging in different exist-
ing MAP-LP inference algorithms, our approach yields a
family of lifted MAP-LP inference algorithms. We illus-
trated this empirically for MPLP and tree-reweighted BP.
In fact, running MPLP yields the first provably convergent
lifted MP approach for MAP-LP relaxations. More impor-
tantly, our result suggests a novel view on lifted inference:
lifted inference can be viewed as standard inference in a

reparametrized model. Exploring this view for marginal in-
ference as well as for branch-and-bound MAP inference
approaches are the most attractive avenue for future work.

Acknowledgments: The authors would like to thank the
anonymous reviewers and Udi Apsel for their feedback and
Guy Van den Broeck for providing the evidence approx-
imation code. This research was partly supported by the
German-Israeli Foundation (GIF) for Scientific Research
and Development, 1180-218.6/2011, and by the German
Science Foundation (DFG), KE 1686/2-1.
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(a) Complete Graph MLN.

(b) Clique-Cycle MLN.
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Figure 4: Experimental results on the test models from Tab. 1. Each row shows from left to right the objective for different
weights, the size (number of nodes and factors) in log-space and the running time in seconds in log-space for ground (red)
versus lifted (black). As one case see, lifted variational marginal inference can be orders of magnitude faster than it ground
version without sacrificing the objective. (best viewed in color)

6 CONCLUSIONS

We have established a “lifted inference by reparametriza-
tion” paradigm for variational marginal inference. More
precisely, we have introduced the notion of equitable par-
titions of concave free energies and shown how to use
them to reparameterize the corresponding variational op-
timization problems. In turn, a large class of existing
variational marginal inference algorithms can directly be
made aware of symmetries without modifications. We illus-
trated this by lifting Schwing et al.’s distributed message-
passing algorithm for marginal inference, resulting in the
first lifted, distributed, convergent message passing algo-
rithms for marginal inference. Moreover, the paradigm of
reparametrization allows us to address the observation of
Bui et al. [2] about their Frank-Wolfe TRW solver running
slower than BP. At least in the case where no extra tight-
ening is required, one can just compute the TRW count-
ing numbers with lifted Kruskal, reparametrize and apply a
generic convergent message-passing algorithm.

Our work provides several avenues for future work. For in-
stance, one should explore what other constraints we can
posed on counting numbers to enforce exactness while we
can still optimize over the set in a lifted fashion. Since the
dimensionality reduction changes the geometry of the vari-
ational optimization problem, one should also investigate
its interaction with the solvers. It is interesting to explore
features of relational languages to speed up lifted varia-
tional marginal inference even more. One of the most in-
teresting open question raised by our work is whether non-
trivial reparametrizations of FBethe and of energies in gen-
eral exists and are exploitable for speeding up optimiza-
tion, at least in an approximate sense. An affirmative an-
swer would have deep implications not only for probabilis-
tic inference but for many tasks in computer vision, ma-
chine learning, and AI in general.

Acknowledgements: The authors would like to thank the
reviewers for their feedback. This research was partly sup-
ported by the German-Israeli Foundation (GIF) for Scien-
tific Research and Development, 1180-218.6/2011.
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Key Idea: Refine self-loops 
[Mladenov, Globerson, Kersting UAI 2014; Mladenov, Kersting UAI 2015] 
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Replace l2- by l1-,l∞-norm in the standard SVM 
formulation 

Hinführungen zur SVM (Support Vector Machine) Maximum Margin Methode Zusammenfassung
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1 var pred /1; #predicted label for unlabeled instances

2 var slack /1; #the slacks

3 var coslack /2; #slack between neighboring instances

4 var weight /1; #the slope of the hyperplane

5 var b/0; #the intercept of the hyperplane

6 var r/0; #margin

7

8 slack = sum{label(I)} slack(I);

9 coslack = sum{cite(I1,I2),label(I1),query(I2)} slack(I1,I2)

10 + sum{cite(I1 ,I2),label(I2),query(I1)} slack(I1 ,I2)

11

12 #find the largest margin. Here the C’s encode trade -off parameters

13 minimize: -r + C(1) * slack + C(2) * coslack;

14

15 subject to forall {I in query(I)}: pred(I) = innerProd(I) + b;

16 #related instances should have the same labels.

17 subject to forall {I1 , I2 in cite(I1 , I2), label(I1), query(I2)}:

18 label(I1) * pred(I2) + slack(I1, I2) >= r;

19 #the symmetric case

20 subject to forall {I1 , I2 in cite(I1 , I2), label(I2), query(I1)}:

21 label(I2) * pred(I1) + slack(I1, I2) >= r;

22

23 #examples should be on the correct side of the hyperplane

24 subject to forall {I in label(I)}:

25 label(I)*( innerProd(I) + b) + slack(I) >= r;

26 #weights are between -1 and 1

27 subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;

28 subject to : r >= 0; #the margin is positive

29 subject to forall {I in label(I)}: slack(I) >= 0; #slacks are positive

Figure 15: An RLP-SVM model for collective inference in a transductive setting.

the best performance but to illustrate the ease of the relational mathematical
programming approach, we chose the following, rather basic approach. We
add constraints which favor that unlabeled instances have the same label as
their labeled neighbors. To account for contradicting examples, we introduce
slack variables for these constraints and add them to the objective with a
separate penalty parameter. This results in the TC-RLP-SVM model shown
in Fig. 15. Here, the new predicate pred/2 denotes the predicted label for
unlabeled instances. The LogKB gets two new predicates:

C(1) = 0.0021. C(2) = 0.0031.

cite (89547 , 1132385). cite (89547 , 1152379). ...

query (1128959). query (16008). ...

The cite/2 predicate encodes citation information, and the query/1 pred-
icate marks unlabeled instances whose labels are to be inferred. We notice
that the parameters in the objective play a di↵erent role in the TC-RLP-
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[Kersting, Mladenov, Tokmakov ARXIV 2014, AIJ 2015] 
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The more observed the more lifting 
Faster end-to-end even in the light of  
Gurobi‘s fast pre-solving heuristics 
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Relational MAP LPs 
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1 var m/2; #single node , pairwise , and

2 var m/4; #triplewise probabilities

3 var m/6; #of configurations to be determined by the solver

4 #value of the MAP assignment

5 score = sum{w(P, V)} w(P, V) * m(P, V) +

6 sum{w(P1, P2, V1, V2)} w(P1 , P2 , V1 , V2) * m(P1, P2, V1 , V2) +

7 sum{w(P1, P2, P3, V1 , V2 , V3)} w(P1 , P2 , P3, V1 , V2, V3) *

8 m(P1 , P2, P3, V1, V2, V3);

9

10 #marginalization of pairwise beliefs

11 marginalize(P1 , P2 , V1) = sum{w(P2, V2)} m(P1, P2, V1 , V2);

12 ...

13 #marginalization of ternary beliefs

14 marginalize(P1 , P2 , P3, V1) = sum{w(P3 , V3), w(P2 , V2)}

15 m(P1 , P2, P3, V1, V2, V3);

16 ...

17 maximize: score; #find assignment with largest value

18 subject to forall {P in w(P, _)}:

19 sum {w(P, V)} m(P, V) = 1; #atom beliefs sum to one

20 #pairwise consistency constraints

21 subject to forall {P1 , P2 , V1 in w(P1 , P2 , V1 , _)}:

22 marginalize(P1 , P2, V1) = m(P1, V1);

23 ...

24 #ternary consistency constraints

25 subject to forall {P1 , P2 , P3 , V1 in w(P1 , P2 , P3 , V1, _, _)}:

26 marginalize(P1 , P2, P3, V1) = m(P1, V1);

27 ...

Figure 12: RLP encoding the MAP-LP for the friends-and-smokers MLNs as shown
in Eq. 6. The last two constraints as well as the last two aggregates have symmetric
copies that have been omitted (this redundancy is necessary, since logic predicates are not
symmetric).

stants, an MLN induces a Markov random field (MRF) with a node for each
ground atom and a clique for every ground formula. We here focus on MAP
(maximum a posteriori) inference where we want to find a most likely joint
assignment to all the random variables. A common approach to approximate
MAP inference in MRFs is based on LPs [22]. Let us now briefly review this
approach.

Suppose we are presented with a propositional MRF with binary random
variables X = {x

1

, . . . , x
n

} and factors F = {(✓
f

, x
f

)}
f

, where each ✓
f

is a
function (having no 0-values) over a subset of random variables x

f

✓ X. As
LP variables, we introduce variable beliefs µ

i

over the states of each random
variable x

i

(e.g. µ
i

(x
i

= 0), µ
i

(x
i

= 1) are LP variables) and joint beliefs µ
f

over all joint configuration of each subset x
f

(e.g. µ
f

(x
i

= 0, x
j

= 1, x
k

= 0),
etc.). The essence of the MAP-LP approach is to constrain the joint beliefs
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Stays fix for different relational probabilistic 
model, which are specified in a knowledge base 

[Kersting, Mladenov, Tokmakov ARXIV 2014, AIJ 2015] 
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Relational and Compressed 
Label Propagation 
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[Hadiji, Mladenov, Bauckhage, Kersting IJCAI  2015] 

§  Many human activities have been shown to 
exhibit universal patterns.  

§  What about researcher migration in CS? 
§  Inferred from 1 million authors of 1,9 

million papers 

Early Stage: 
LogNormal 

Later Stages: 
Gamma 

Brain Circulation: 
Gamma 



Relational and Compressed 
Label Propagation 
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[Hadiji, Mladenov, Bauckhage, Kersting IJCAI  2015] 

in ACM DL are not in canonical form which results in a very
large set of affiliation candidates. Secondly, although we have
now partial affiliation information, we still lack exact geo-
information of the organizations to identify cities, countries,
and continents. Many of the affiliation names may contain a
reference to the city or country but these pieces of information
are not trivial to extract from the raw strings. Additionally,
we are interested in latitude and longitude values to enable
further analysis and visualization. Hence, we used Google’s
Geocoding API4 to resolve the locations. This resulted in
geo-tags for most of the affiliation strings. A remaining gap
rises from the fact that the API does not find geo-locations
for all the strings in our database. Essentially, this is because
the strings contain information not related to the geo-location
such as departments, e-mail addresses, among others.

3 Relational Label Propagation
Before we infer the missing author-paper-pairs, we revise our
obtained affiliations. To further increase the quality of our
harvested data, we hypothesized that there are actually not
that many relevant organizations as obtained from ACM and
these names need to get de-duplicated. Since we have geo-
locations for most of the affiliations, we can use this infor-
mation for a simple entity resolution and cluster affiliations
together for which the retrieved cities coincide5.

Based on these seed geo-locations, we filled in the missing
ones using LP. LP runs on an undirected graph G = (V,E)

where V is a set of nodes and E is set of weighted edges.
Each node corresponds to an author-paper-pair in our bibli-
ography. The edges represent the similarity between nodes.
In the following, we use logic rules to formulate this similar-
ity. These rules are based on relations such as co-authorship
between the authors associated with the nodes. Specifically,
in order to define the edges, we considered the following
functions over nodes that return facts about the nodes cor-
responding to the function name: author(i), paper(i),
and year(i). For shorthand, we write a(i), p(i), and
y(i). Based on these functions, we defined rules that add
a weight �k to the each edge weight wij whenever the rule
holds. Initially, we set all weights wij to zero. The first rule,
wij = wij +�1 if p(i) = p(j), adds a weight between two
nodes if the nodes belong to two authors that co-author the
paper associated with nodes i and j. The second rule,

wij = wij + �2 if a(i) = a(j) ^ y(i) = y(j)

adds a weight whenever two nodes corresponds to different
publications by the same author in the same year. Finally,

wij = wij + �3 if a(i) = a(j) ^ y(i) = y(j)+ 1

fires when the nodes belong to two publications of the same
author but written in subsequent years. Using these edge
weights, we construct an affinity matrix W 2 Rn⇥n. If
T = D

�1
W with Dii =

P
j wij , we can implement LP

4
developers.google.com/maps/documentation/geocoding

5 In-
deed, this approach does not distinguish multiple affiliations per city
such as MIT and Harvard. However, it is simple and effective, and
— as our empirical results show — the resolution is sufficient to
establish strong regularities in the timing events.
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Figure 1: Toy example for CLP. The LP graph in Fig. 1a con-
tains two labeled nodes (green shades) and three unlabeled
nodes (white). The corresponding similarity matrix is given
in Fig. 1c. Based on the CEP, the graph can be colored as
in Fig. 1b. The partition clusters X3 and X4 together. The
corresponding compressed matrix Q is depicted in Fig. 1d.
(Best viewed in color)

using a simple power method: Y

t+1
= TY

t
, where Y

t is
the labels matrix. At convergence, row i in Y

⇤ corresponds
to a distribution over the possible labels for node i. In Y

0,
we set a cell yij to 1 if we know that node i has label j. All
other cells are set to 0. The original implementation suggests
a push-back phase in every iteration, clamping the rows of
the known nodes in Y

t+1 to their original distribution as in
Y

0. Instead, we adapt the affinity matrix in such a way that
we do not need the explicit push-back anymore. More pre-
cisely, for a labeled node i, we set wij = 1 for i = j and
wij = 0 otherwise. This iterative procedure is performed un-
til convergence or a maximum number of iterations has been
reached. At convergence, the labels of the unknown nodes
are read off the labels matrix, i.e., the label of node i is given
by y

⇤
i = argmaxj yij .

4 Compressed Label Propagation
While W , and respectively T , is very sparse, Y t becomes
denser with every iteration. Eventually, this presents an ob-
stacle in terms of both computation time and memory require-
ments. To alleviate some of this burden, we can exploit the
latent symmetries in the structure of T . In our proposed ap-
proach, CLP, we do so by means of equitable partitions.

The algorithm proceeds as follows (illustrated in Fig. 1):
we first partition the nodes according to their initial labels
(Fig. 1a). We then compute the Coarsest Equitable Partition
(CEP) of T which preserves the initial label partition. From
the partition, we obtain a (hopefully) smaller quotient matrix
Q by: a) replacing the set of all columns corresponding to
nodes in the same class by their sum; b) replacing the set of all
rows of nodes in the same class by their average (Fig. 1c). We
carry out step b) on Y

0 as well to obtain the compressed label
matrix J

0. Finally, we run LP with Q and J

0 (Fig 1d) in place
of T and Y

0. As we will show now, we can perfectly recover
Y

k from J

k and, thus, the result of LP can be recovered from
the result of CLP.

Relational way to specify Label Propagation matrix  
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Nodes Accuracy

6% 0.58
12% 0.67
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Figure 2: (left) Label accuracy for the AAN dataset with a varying number of initially labeled nodes. One should note that
accuracy is a very challenging performance measure for a multi-label problem with around 800 classes. (middle) Runtime of
LP on the AAN dataset with an increasing number of available cores. (right) Due to the large size of DBLP, it is not possible
to run LP with all cities in a single run. Instead, we have to split the cities into batches and run (C)LP on each batch separately.
As one can see, CLP can use up to 570 cities in a single run while LP can only handle 425 cities at once. (Best viewed in color)

Theorem 1 (Compressed LP is sound and complete). Run-
ning the power method on the compressed matrix Q returns
identical label scores as running LP on T .

Proof (sketch). First observe that algebraically, Q and J

0

can be written as Q =

b
BTB and J

0
=

b
BY

0, where B is
an n ⇥ p matrix having Bik = 1 if node i is in class k and
0 otherwise (representing the summing of columns). b

B is
defined as b

Bki = 1/|class k| if i is in class k, otherwise 0

and represents the averaging of rows. We first reference the
following facts [Grohe et al., 2014]: (|) b

BB = Ip ( bB acts
as left inverse of B); (~) B

b
BT = TB

b
B (the matrix B

b
B

commutes with T since B comes from the CEP of T ).
As a first step, we need to show that Y k+1

= B

b
BY

k+1.
We proceed by induction. Due to space constraints we omit
the discussion of k = 0, which follows from the construction
of the CEP. For the induction step, we have

Y

k+1
= TY

k ind.
= TB

b
BY

k ~
= B

b
BTY

k
= B

b
BY

k+1
, (�)

where the second equality follows from our induction hy-
pothesis. Note that we also omitted the discussion of the
push-back operation, however, it can be shown that the above
holds after push-back as well. Finally, induction shows that
Y

k+1
= BJ

k+1:

BJ

k+1
= B(

b
BTB)J

k ind.
= B

b
BT (B

b
B)Y

k ~,|
= B

b
BTY

k

= B

b
BY

k+1 �
= Y

k+1
.

Observe now that Q 2 Rp⇥p, where p is the number of
classes of the CEP of T . That is, we have one row and col-
umn per cluster instead of per node. Thus, if p ⌧ n, we need
to solve a much smaller system. Moreover, using the highly
efficient implementation of SAUCY [Katebi et al., 2012], CEP
computation is done in O [(m+ n) log n] time; even in case
of little to no symmetry, there is only little computational
overhead due to symmetry detection.

5 Inferred Regularities from Bibliographies
With CLP at hand, let us now turn towards inferring regulari-
ties. There are different choices as a starting point for the data

harvesting process. Ultimately, we are interested in a bibliog-
raphy covering all different scientific disciplines. However,
to begin with, we focus on CS. For an qualitative evaluation,
we are interested in a dataset with as much ground truth as
possible. On the other hand, for an in-depth analysis of re-
searcher’s migration behavior, we would like to construct a
database as large as possible. Resulting from these differ-
ent requirements, we will evaluate our CLP on two different
datasets to show its efficiency and effectiveness. In partic-
ular, we demonstrate (1) that relational LP produces mean-
ingful label distributions with high accuracy on a manually
curated dataset and that (2) CLP significantly speeds up stan-
dard LP and requires less memory at the same time, which is
especially important for large-scale datasets. For all our ex-
periments we used �1 = 1, �2 = 3, and �3 = 2 (found by
a grid search on a small subset of the data) as weights for the
logical rules described above. LP heavily relies on an effi-
cient implementation for multiplying a sparse matrix with a
dense matrix. To this end, we used LAMA6, a very efficient
parallelized C++ linear algebra library. All experiments were
run on a Linux machine with 64GB RAM and 20 cores.

5.1 Empirical Investigation of Compressed LP
To verify the quality of relational LP, we start our analysis
with a dataset for which we have a relatively large amount
of affiliations in advance. The AAN dataset [Radev et al.,
2009] contains 19,410 publications in total written by 15,397
authors. After reducing the available affiliations to the city
level, the resulting number of author-paper-pairs is 49,530
while 33,061 of these nodes are labeled with one of 802 cities.
The graph G has a total of 145,594 edges, resulting in a very
sparse matrix T . By removing an increasingly number of la-
bels from the graph, we construct test sets of different sizes
which we use for the evaluation. We start by removing 10%
of the labels, obtaining a graph with 55% of the nodes la-
beled. We then gradually add 10% of the nodes to the test set
until only 6% of the nodes are labeled. We apply this dataset
construction ten times, to allow for multiple re-runs of the
experiment. The table in Fig. 2(left) shows the average accu-
racy of the predicted labels for each test set when running LP
6
www.libama.org

Fractional automorphims for compressing the 
resulting label propagation matrix; use any 
label propagation approach (even QP once) on 
the compressed matrix  
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http://www-ai.cs.uni-dortmund.de/weblab/static/RLP/html/ 

… 

Loops and relations get 
interwined, and models 
can refer to each other 

Using a probabilistic 
programming language 

we can even get 
stochastic RMPs 



Take-away Messages 
1.  Graphical models allow to deal with 

uncertainty 
2.  Graphs/Matrices are not enough, we 

need logic /high-level languages 
3.   Tree-Width is not the end of the story 
4.   Probabilities are not enough we need 

optimization 
5.   Relations and loops should go together 
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§  Reduce the level of expertise necessary to build 
optimization applications  

§  Shorten mathematical program code to make 
models faster to write and easier to communicate  

§  Reduce development time and cost to encourage 
experimentation  

§  Facilitate the construction of more sophisticated 
models that incorporated rich domain knowledge 

§  Speed up solvers by exploiting language 
properties, compression, and compilation  

Democratization of 
Optimization 

Kristian Kersting - Democratization of Optimization 

Thanks for 
you attention 

Achieving this requires the help of 
all of you! ML, KR, CP, SAT, PL, ... 
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