http: / /www-ai.cs.uni-dortmund.de/weblab/static/RLP/html/

RELOOP: A Toolkit for Relational Convex Optimization

Artificial Intelligence and Machine Learring

David
Poole

MORGAN\&CLAYPOOL PUBLISHERS

Statistical Relational
Artificial Intelligence

and many more ...

The Democratization of Optimization

U technische universität

Kristian Kersting

Democratization of Data

Take your spreadsheet ...

Features

technische universität
dortmund

IS IT REALLY THAT SIMPLE?

NO, e.g., today's data is relational

Relation 1

Relation 2

Objects

Relation 2
technische universität
dortmund

Meart diseases and strokes cardiovascular disease - are expensive for the world

According to the World Heart Federation, cardiovascular disease cost the European Union EURO169 billion in 2003 and the USA about EUR0310.23 billion in direct and indirect annual costs. By comparison, the estimated cost of all cancers is EURO1.46.19 billion and HIV infections, EURO22.24 billion
nature
REVIEWS
nature
REVIEWS
 Electronic Health Records A New Oppoftunity for AI to Save our Lifes
[Natarajoan, Kersting, et al. IAAI 2013, Springer Briefs in CS 2015, AIME 2015]

EHRs are dirty and interconnected

Statistical Relational AI

... the study and design of intelligent agents that act in noisy worlds composed of objects and relations among the objects

Thanks to you - the Iatlian AI community - for your great contributions!

Boosted Statistical Relational Learning

Atherosclerosis is the cause of the majority of Acute Myocardial Infarctions (heart attacks)

[Circulation; 92(8), 2157-62, 1995; JACC; 43, 842-7, 2004]

Algorithm	Accuracy	AUC-ROC
J48	0.667	0.607
SVM	0.667	0.5
AdaBoost	0.667	0.608
Bagging	0.677	0.613
NB	0.75	0.653
RPT	0.669^{*}	0.778
RFGB	0.667^{*}	0.819

Algo	Likelihood	AUC-ROC	AUC-PR	Time
Boosting	0.810	0.961	0.930	9s
MLN	0.730	0.535	0.621	$\mathbf{9 3}$ hrs

Take-Away Messages

1. Graphical models allow to deal with uncertainty and to make predictions
2. Graphs/Matrices are not enough, we need logic/high-level languages

STILL NOT CONVINCED?

Guy van den Broeck's not

 so simple AI example first card of a shuffled deck is an Ace?

Easy for humans but not so easy for graphical models

Exact inference builds a table of $\geq 13^{52}$ rows!

Message passing passes $\geq 13^{52}$ messages!

Graphical model is fully connected, no independencies, high tree-width

Low tree-width is not the final answer

Fast modelling

Fast inference

We need relationa nodels
$w 1: \forall p, x, y, \operatorname{Card}(p, x) \wedge \quad \operatorname{ard}(p, y) \Rightarrow x=y$
$w 2: \forall c, x, y, \operatorname{Card}(x, c) \wedge \operatorname{Card}(y, c) \Rightarrow x=y$
and symmetry-reduction

Take-away Messages

1. Graphical models allow to deal with uncertainty

2. Graphs/Matrices are not enough, we need logic /high-level languages
3. Tree-Width is not the end of the story

[Singla, Domingos AAAI 2008; Kersting, Ahmadi, Natarajan UAI 2009; Ahmadi, Kersting, Mladenov, Natarajan ML] 2013]

Lifted Loopy Belief Propagation = Exploit computational symmetries

[^0]
Compression: Coloring the graph

- Color nodes according to the evidence you have

- No evidence, say red
- State „one", say brown
- State „two", say orange
" ...
- Color factors distinctively according to their equivalence classes. For instance, assuming f_{1} and f_{2} to be identical and B appears at the second position within both, say blue

Compression: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
technische universität
dortmund

Compression: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color

Compression: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color
3. Each node collects the signatures of its neighboring factors

Compression: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures

Compression: Pass the colors around

1. Each factor collects the colors of its neighboring nodes
2. Each factor "signs" ist color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures
5. If no new color is created stop, otherwise go back to 1

Kristian Kersting - Democratization of Optimization

Compression:
 ... and compute the quotient factor graph

Essentially we just compute the so-called quotient factor graph

Finally, run a modified Loopy Belief Propagation

- Nodes are now groups of random variables
- The counts ensure that we send the same number of message as standard loopy belief propagation

Lifted Probabilistic Inference

Compress the model

Run a modified inference method

might also be interwined

Weisfeiler-Lehman (WL) Algorithmus aka "naive vertex classification"

- Basic subroutine for GI testing
- Computes LP-relaxations of GA-ILP, aka. fractional automorphisms
- Quasi-linear running time $\mathrm{O}((\mathrm{n}+\mathrm{m}) \log (\mathrm{n}))$ when using
 asynchronous updates [Berkholz, Bonsma, Grohe ESA 2013]
- Part of graph tool SAUCY [See e.g. Darga, Sakallah, Markov DAC 2008]
- Can be extended to weighted graphs/real-valued matrices [Grohe, Kersting, Madenov, Selman ESA 2014]
- Actually a Frank-Wolfe optimizer and can be viewed as recursive spectral clustering [Kersting, Mladenov, Garnett, Grohe AAAI 2014]

From Factor Graphs to Graphs

Encode the factor colors into the node colors

Then run Weisfeiler Lehman / Color Passing just on the graph

[Mladenov, Ahmadi, Kersting AISTATS 2012, Grohe, Kersting, Mladenov, Selman ESA 2014, Kersting Mladenov, Tokmatov AIJ 2015]

Compressing Linear Programs

$$
\max _{[x, y, z]^{T} \in \mathbb{R}^{3}} \quad 0 x+0 y+1 z
$$

s.t.

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \leq\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right]
$$

(1) Reduce the LP by running WL on the LP-Graph (2) Run any solver on the (hopefully) smaller LP

Kristian Kersting - Democratization of Optimization
quasi-linear overhead that may result in exponential speed up

As also noted by Stephen Boyd

DENSE VS. SPARSE IS NOT ENOUGH, SOLVERS NEED TO BE AWARE OF SYMMETRIES

(a)

(b)

(c)

WWIII
Feasible region of LP and the objective vectors
fractional automorpishm of the LP

Projections of the feasible region onto the span of the fractional automorphism
Compute Equitable Partition (EO) of the LP using WL

$$
\mathcal{P}=\frac{\left\{P_{1}, \ldots, P_{p}\right.}{\begin{array}{c}
\text { Partition of } \\
\text { LP variables }
\end{array}} \frac{\left.Q_{1}, \ldots, Q_{q}\right\}}{\begin{array}{l}
\text { Partition of } \\
\text { LP constraints }
\end{array}}
$$

Intuitively, we group together variables resp. constraints that interact in the very same way in the LP.

Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the coefficient matrix \mathbf{A}

$$
\mathbf{X}_{Q} \mathbf{A}=\mathbf{A} \mathbf{X}_{P}
$$

where \mathbf{X}_{Q} and \mathbf{X}_{p} are doubly-stochastic matrixes (relaxed form of automorphism)

$$
\begin{aligned}
& \left(\mathbf{X}_{P}\right)_{i j}= \begin{cases}1 /|P| & \text { if both vertices } i, j \text { are in the same } P \\
0 & \text { otherwise }\end{cases} \\
& \left(\mathbf{X}_{Q}\right)_{i j}= \begin{cases}1 /|Q| & \text { if both vertices } i, j \text { are in the same } Q \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Fractional Automorphisms Preserve Solutions

If \mathbf{x} is feasible, then $\mathbf{X}_{\mathrm{p}} \mathbf{x}$ is feasible, too. By induction, one can show that left-multiplying with a double-stochastic matrix preserves directions of inequalities. Hence,

$$
\mathbf{A} \mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{X}_{Q} \mathbf{A} \mathbf{x} \leq \mathbf{X}_{Q} \mathbf{b} \Leftrightarrow \mathbf{A} \mathbf{X}_{P} \mathbf{x} \leq \mathbf{b}
$$

technische universität
dortmund

Fractional Automorphisms Preserve Solutions

If \mathbf{x}^{*} is optimal, then $\mathbf{X}_{\mathrm{p}} \mathbf{x}^{*}$ is optimal, too.
Since by construnction $\mathbf{c}^{T} \mathbf{X}_{P}=\mathbf{c}^{T}$ and hence $\mathbf{c}^{T}\left(\mathbf{X}_{P} \mathbf{x}\right)=\mathbf{c}^{T} \mathbf{x}$

What have we established so far?

Instead of considering the original LP

$$
(\mathbf{A}, \mathbf{b}, \mathbf{c})
$$

It is sufficient to consider

$$
\left(\mathbf{A} \mathbf{X}_{P}, \mathbf{b}, \mathbf{X}_{P}^{T} \mathbf{c}\right)
$$

i.e. we "average" parts of the polytope.

But why is this dimensionality reduction?

Dimensionality Reduction

The doubly-stochastic matrix \mathbf{X}_{P} can be written
as

$$
\mathbf{X}_{P}=\mathbf{B B}^{T}
$$

$$
\mathbf{B}_{i P}= \begin{cases}\frac{1}{\sqrt{|P|}} & \text { if vertex } i \text { belongs to part } P, \\ 0 & \text { otherwise. }\end{cases}
$$

Since the column space of B is equivalent to the span of \mathbf{X}_{P}, it is actually sufficient to consider only

$$
\left(\mathbf{A} \mathbf{B}_{P}, \mathbf{b}, \mathbf{B}_{P}^{T} \mathbf{c}\right)
$$

This is of reduced size and actually we can also drop any constraint that becomes identical

Dimensionality Reduction of LPs

(b)

(c)

Feasible region of LP and the objective vectors

Span of the
fractional automorpishm of the LP

Projections of the feasible region onto the span of the fractional automorphism

Any MAP-LP message-passing approach is liftable

technische universität
dortmund

Any concave free energy is

 liftable

(a) Complete Graph MLN.

(b) Clique-Cycle MLN.

(c) Friends-smokers MLN.

Actually, this is the first distributed lifted message-passing approach

All MP Inference Approaches are Liftable

[Mladenov, Globerson, Kersting UAI 2014; Mladenov, Kersting UAI 2015]

Key Idea: Refine self-loops

coloring

lifting

refine

Lifted inference = Inference in a smaller, reparameterized model

Classification using LPs

$$
H^{*}=\left\{\vec{x} \mid\langle\vec{x}, \vec{\beta}\rangle+\beta_{0}=0\right\}
$$

$$
d\left(H_{1}, H_{2}\right)=\frac{2}{\|\vec{\beta}\|}
$$

Replace I_{2} - by $I_{1}-I_{\infty}$-norm in the standard SVM formulation

Declarative Machine Learning

```
var pred/1;
var slack/1;
var coslack/2;
dicted label for unlabeled instances
#th
var weight/1;
#th
var b/0;
6 var r/O;
#th
Logically parameterized LP variable
    (set of ground LP variables)
#margin
slack = sum{label(I)} slack(I);
coslack = sum{cite(I1,I2),label(I1),query(I2)} slack(I1,I2)
    + sum{cite(I1,I2),label(I2),query(I1)} slack(I1,I2)
#find the largest margin. Here the C's encode trade-off parameters
13 minimize: -r + C(1) * slack + C(2) * coslack;
```


Logically parameterized LP objective

Logically parameterized LP constraint

```
#examples should be cone correct side of the hyperplane
subject to forall {I in label(I)}:
    label(I)*(innerProd(I) + b) + slack(I) >= r;
#weights are between -1 and 1
subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;
subject to : r >= 0; #the margin is positive
subject to forall {I in label(I)}: slack(I) >= 0; #slacks are positive
```

```
var pred/1; #predicted label for unlabeled instances
var slack/1; #the slacks
var coslack/2; #slack between neighboring instances
var weight/1; #the slope of the hyperplane
var b/O; #the intercept of the hyperplane
var r/O; #margin
slack = sum{label(I)} slack(I);
coslack = sum{cite(I1,I2),label(I1),query(I2)} slack(I1,I2)
    + sum{cite(I1,I2),label(I2),query(I1)} slack(I1,I2)
#find the largest margin. Here the C's encode trade-off parameters
minimize: -r + C(1) * slack + C(2) * coslack;
```

```
subject to forall {I in query(I)}: pred(I) = innerProd(I) + b;
#related instances should have the same labels
subject to forall {I1, I2 in cite(I1, I2), label(I1), query(I2)}
    label(I1) * pred(I2) + slack(I1, I2) >= r;
subject to forall {I1, I2 in cite(I1, I2), label(I2), query(I1)}:
    label(I2) * pred(I1) + slack(I1, I2) >= r;
#examples shoula be on the correct slae or the nyperpiane
subject to forall {I in label(I)}:
    label(I)*(innerProd(I) + b) + slack(I) >= r;
#weights are between -1 and 1
subject to forall {J in attribute(_, J)}: -1 <= weight(J) <= 1;
subject to : r >= 0; #the margin is positive
subject to forall {I in label(I)}: slack(I) >= 0; #slacks are positive
```

[Kersting, Mladenov, Tokmakov ARXIV 2014, AIJ 2015]

Cora (most common vs. rest)

The more observed the more lifting Faster end-to-end even in the light of Gurobi's fast pre-solving heuristics

Relational MDP LPs

technische universität
dortmund
[Kersting, Mladenov, Tokmakov ARXIV 2014, AIJ 2015]

Relational MAP LPs

```
var m/2; #single node, pairwise, and
var m/4; #triplewise probabilities
var m/6; #of configurations to be determined by the solver
#value of the MAP assignment
score = sum{w(P, V)} w(P, V) * m(P, V ) +
    sum{w(P1, P2, V1, V2)} w(P1, P2, V1, V2) * m(P1, P2, V1, V2) +
    sum{w(P1, P2, P3, V1, V2, V3)} w(P1, P2, P3, V1, V2, V3) *
    m(P1, P2, P3, V1, V2, V3);
#marginalization of pairwise beliefs
marginalize(P1, P2, V1) = sum{w(P2, V2)} m(P1, P2, V1, V2);
...
#marginalization of ternary beliefs
marginalize(P1, P2, P3, V1) = sum{w(P3, V3), w(P2, V2)}
    m(P1, P2, P3, V1, V2, V3);
...
maximize: score; #find assignment with largest value
subject to forall {P in w(P, _)}:
    sum {w(P, V)} m(P, V) = 1; #atom beliefs sum to one
#pairwise consistency constraints
subject to forall {P1, P2, V1 in w(P1, P2, V1, _)}:
    marginalize(P1, P2, V1) = m(P1, V1);
#ternary consistency constraints
subject to forall {P1, P2, P3, V1 in w(P1, P2, P3, V1, _, _)}:
    marginalize(P1, P2, P3, V1) = m(P1, V1);
```

Stays fix for different relational probabilistic model, which are specified in a knowledge base

Relational and Compressed Label Propagation

- Many human activities have been shown to exhibit universal patterns.
- What about researcher migration in CS?
- Inferred from 1 million authors of 1,9 million papers

Early Stage: LogNormal

Later Stages:
Gamma

Brain Circulation:
 Gamma

technische universität
dortmund

Relational and Compressed Label Propagation

Relational way to specify Label Propagation matrix

$$
w_{i j}=w_{i j}+\lambda_{2} \text { if } a(i)=a(j) \wedge y(i)=y(j)
$$

Fractional automorphims for compressing the resulting label propagation matrix; use any label propagation approach (even QP once) on the compressed matrix

Kristian Kersting - Democratization of Optimization

technische universität
[Kersting, Mladenov, Tokmakov ARXIV 2014, AIJ 2015]

Relational Mathematical Programming

Relational Mathematical Programming

Relational Mathematical Programming

However, relational programming is not the answer to everything

Let's embed relational mathematical programming into an imparative programming

relo p

http://www-ai.cs.uni-dortmund.de/weblab/static/RLP/htmI/

RELOOP: A Toolkit for Relational Convex Optimization

flow = numeric_predicate("flow", 2) cap = numeric_predicate("cap", 2)	Using a probabilistic programming language
model.add_reloop_variable(flow)	stochastic RMPs
model += RlpSum([X, Y], source $(X) \&$	ops and relations get
$\begin{aligned} & \text { outFlow }=\operatorname{RlpSum}([X,], \operatorname{edge}(X, Z), f \\ & \text { inFlow }=\operatorname{RlpSum}([Y,], \operatorname{edge}(Z, Y), f] \end{aligned}$	interwined, and models can refer to each other

Take-away Messages

1. Graphical models allow to deal with uncertainty

2. Graphs/Matrices are not enough, we need logic /high-level languages
3. Tree-Width is not the end of the story
4. Probabilities are not enough we need optimization
5. Relations and loops should go together

tu

Democratization of Optimization

- Reduce the level of expertise necessary to build optimization applications
- Shorten mathematical program code to make models faster to write and easier to communicate
- Reduce development time and cost to encourage experimentation
- Facilitate the construction of more sophisticated models that incorporated rich domain knowledge
- Speed up solvers by exploiting language properties, compression, and compilation

> Achieving this requires the help of all of you! ML, KR, CP, SAT, PL, ... you attention

[^0]: Kristian Kersting - Democratization of Optimization

