Abstract Solvers for Quantified Boolean Formulas and Their Applications

Remi Brochenin and Marco Maratea

DIBRIS, University of Genoa, Italy

AI*IA 2015: Ferrara, Sept 23rd-25th 2015

Issue

- Usually solving procedures are presented by means of pseudo-code descriptions, but
- some communities have experienced that analyzing such procedures on this basis may not be fruitful.

Instead ...

- more formal descriptions, based on mathematically precise but possibly simple objects, can be useful, and
- can allow for, e.g. a uniform representation.

ヘロト 人間 ト ヘヨト ヘヨト

Issue

- Usually solving procedures are presented by means of pseudo-code descriptions, but
- some communities have experienced that analyzing such procedures on this basis may not be fruitful.

Instead ...

- more formal descriptions, based on mathematically precise but possibly simple objects, can be useful, and
- can allow for, e.g. a uniform representation.

くロト (過) (目) (日)

Abstract solvers are a relatively new methodology for analyzing, comparing and composing solving procedures in an abstract way via graphs, where

- the states of computation are represented as nodes,
- the solving techniques as arcs between such nodes,
- the solving process as a path in the graph, and
- formal properties of the procedures are reduced to related graph's properties.

通 とう ほう う ほうし

DPLL SAT solving: Transition rules of the graph DPLLF

Conclude :	$L \Longrightarrow UNSAT$	if $\begin{cases} L \text{ is inconsistent and} \\ L \text{ contains no decision literals} \end{cases}$
Backtrack :	$LI^{\Delta}L' \Longrightarrow L\bar{I}$	if $\begin{cases} Ll^{\Delta}L' \text{ is inconsistent and} \\ L' \text{ contains no decision literals} \end{cases}$
Unit :	$L \Longrightarrow LI$	if $\begin{cases} I \text{ does not occur in } L \text{ and} \\ F \text{ contains a clause } C \lor I \text{ and} \\ \text{ all the literals of } \overline{C} \text{ occur in } L \end{cases}$
Decide :	$L \Longrightarrow Ll^{\Delta}$	if $\begin{cases} L \text{ is consistent and} \\ \text{neither } I \text{ nor } \overline{I} \text{ occur in } L \end{cases}$
Success :	$L \Longrightarrow SAT$	if no other rule applies

★ Ξ → ★ Ξ →

э

Initial state :		Ø
Decide	\implies	a^{Δ}
Unit	\implies	a^ c
Decide	\implies	$a^{\Delta} c b^{\Delta}$
Success	\implies	SAT

Initial state :		Ø
Decide	\implies	a^{Δ}
Decide	\implies	$a^{\Delta} \overline{c}^{\Delta}$
Unit	\implies	$a^{\Delta} \overline{c}^{\Delta} c$
Backtrack	\implies	a [∆] c
Decide	\implies	$a^{\Delta} c b^{\Delta}$
Success	\Rightarrow	SAT

Figure : Examples of paths in $DPLL_{\{a \lor b, \ \overline{a} \lor c\}}$.

御 と く ヨ と く ヨ と

э

Theorem

For any CNF formula F,

- graph DPLL_F is finite and acyclic,
- any terminal state reachable from Ø in DPLL_F other than UNSAT is SAT, and
- UNSAT is reachable from Ø in DPLL_F if and only if F is unsatisfiable.

・ 同 ト ・ 国 ト ・ 国 ト …

1

QBF is the prototypical PSPACE-complete problem.

- In this paper, three abstract solvers for solving QBFs are presented.
- One proposal abstracts the Q-DPLL algorithm for QBF.
- Q-DPLL is an extension of the DPLL algorithm for SAT.

(* E) * E)

We are given a (prenex CNF) QBF formula F.

QBF_F graph

- The nodes are the states defined similarly as for DPLL, but decision literals are either *universal* (*I*[∀]) or *existential* (*I*[∃]).
- The edges corresponds to updated and additional transition rules wrt DPLL graph.

Q-DPLL for QBFs: Transition rules

Conclude	L	$\implies \textit{UNSAT}$	if $\{ L \text{ is inconsistent and existential free} \}$
Backtrack∃	LI [∃] L′	$\Longrightarrow L \bar{l}$	$ \begin{array}{l} \text{if} \left\{ \begin{array}{l} L^{ \overline{2} }L' \text{ is inconsistent and} \\ I^{ \overline{2} } \text{ is the rightmost existential literal} \\ \text{no other rule applies except } Succeed \text{ and} \\ I^{ \overline{2} } \text{ is the rightmost universal literal} \end{array} \right. $
Backtrack∀	LI [∀] L′	$\implies L\bar{l}$	if $\begin{cases} no other rule applies except Succeed and V^{\forall} is the rightmost universal literal$
Unit	L	\Longrightarrow LI	if if if if if if i (curs in C and each other unassigned literal of C is universal and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and each assigned literal of C is contradicted i (curs in C and i (curs
Monotone1	L	$\implies LI$	if $\begin{cases} \text{the variable of } I \text{ is existential and} \\ I \text{ occurs in some clause } C \text{ and} \end{cases}$
Monotone2	L	\Longrightarrow LI	$\begin{cases} \bar{I} \text{ does not occur in any clause } C \\ \text{the variable of } I \text{ is universal and} \\ \bar{I} \text{ occurs in some clause } C \text{ and} \\ I \text{ does not occur in any clause } C \end{cases}$
Decide	L	$\Longrightarrow LI^Q$	$\begin{cases} L \text{ is consistent and} \\ \text{the variable of } I \text{ is unassigned and} \\ \text{the quantifier of the variable of } I \text{ is } Q \text{ and} \\ \text{for all } I' \text{ such that } Ievel(I') < Ievel(I) \\ \text{the variable of } I' \text{ is assigned.} \end{cases}$
Succeed	L	\implies Valid	if { no other rule applies

Figure : The transition rules of the QBF_F graph.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

Q-DPLL for QBFs: Example

 $F := \exists a \forall d \exists bc \{ \{\overline{a}, \overline{d}, b\}, \{\overline{d}, \overline{b}\}, \{b, c\}, \{a, \overline{d}, \overline{c}\}, \{d, b, \overline{c}\} \}$ (1)

Example

A possible path in QBF_F is:

Decide = Monotone1 = Backtrack _∀ = Unit =	\Rightarrow \Rightarrow \Rightarrow			\implies	ad [∀] ad [∀] b
---	---	--	--	------------	--------------------------------------

→ E > < E >

For any QBF formula F,

- the graph QBF_F is finite and acyclic;
- Any terminal state in QBF_F is either UNSAT or Valid;
- If a state Valid is reachable from the initial state in QBF_F then F is satisfiable;
- UNSAT is reachable from the initial state in QBF_F if and only if F is not satisfiable.

・ 同 ト ・ 臣 ト ・ 臣 ト …