

UNIVERSITY OF FERRARA DEPARTMENT OF ENGINEERING

Path Relinking for a Team Scheduling Problem Arising in Hydroinformatics

Speaker: Andrea Peano

Coauthor: Maddalena Nonato

- What is a contamination event?
- Problem modellization (feasible region + objective function)
- State of the art
- Path relinking strategies
 - Route based PR
 - Hybrid PR
- Results
- Conclusions and future work

Injection of contaminant into the hydraulic network. Contaminant is spreading...

Optimizing the schedule

Andrea Peano – 25/09/2015

Solving architecture:

- Parallel GAs, plus a
- Intensification step by "Path Relinking"

by Glover et al. 2000

Legend

- reference solution
- \otimes initial solution

 $\oplus g$

- \square possible move
- selected move
- \oplus guiding solution

by Glover et al. 2000

Legend

- reference solution
- \otimes initial solution

 $\oplus g$

- \square possible move
- selected move
- \oplus guiding solution

by Glover et al. 2000

Legend

- reference solution
- \otimes initial solution

 $\oplus g$

- \square possible move
- selected move
- \oplus guiding solution

Andrea Peano – 25/09/2015

by Glover et al. 2000

Legend

- reference solution
- \otimes initial solution
- \square possible move
- selected move
- \oplus guiding solution

Path Relinking: solution representations

Experimental framework

- Ferrara's hydraulic network (about 120'000 users)
- 20 contamination scenarios
- Reference set is built up from 10 final population of the GA
- GA, PRr and PRh were limited to 500 simulations

Results

AlxIA 2015 @ FERRARA

Results

	10 GA			+1 GA			$\mathbf{A}_{\mathbf{A}}^{d}$ PRr					
scen	rting key)			impr.			$\frac{1}{2}$ impr.					npr.
scen	ave	\underline{var}	best (s^*)	\mathbf{best}	#	ave	best	#	ave	\mathbf{best}	#	ave
	l	ave	l	l	H	l	l	H	l	l	H	l
A	6,022	0.04	6,000	6,000	0	0	5,997	8	9	6,000	7	9
В	$7,\!170$	0.10	$7,\!170$	$7,\!170$	0	0	7,170	1	2	$7,\!156$	5	14
C	10,868	1.51	$10,\!672$	10,672	0	0	10,569	3	49	$10,\!623$	7	47
D	11,229	1.16	11,021	11,021	0	0	11,021	0	0	10,993	7	44
E	12,732	0.21	12,698	12,698	1	5	12,698	1	4	$12,\!698$	3	15
F	$13,\!938$	0.76	13,793	13,793	1	2	13,624	4	69	13,723	7	44
G	$15,\!841$	0.22	15,758	15,758	0	0	15,758	4	29	$15,\!692$	8	57
H	16,991	2.44	$16,\!571$	16,571	1	3	15,708	7	207	$16,\!351$	9	137
I	20,792	7.21	20,122	20,122	0	0	20,122	2	50	$20,\!122$	5	22
J	22,273	0.39	22,164	22,164	0	0	22,164	2	8	$22,\!105$	9	85
K	25,138	0.56	25,043	25,043	0	0	25,043	2	21	25,043	7	68
L	35,067	1.00	34,662	34,662	0	0	34,662	4	136	34,536	7	120
M	36,706	0.52	36,706	36,706	0	0	36,706	1	2	36,706	5	103
N	40,121	4.74	39,230	39,230	1	21	39,230	4	121	39,128	10	215
0	42,019	1.68	41,595	41,595	0	0	41,595	0	0	$41,\!595$	6	79
P	44,470	0.34	44,286	44,286	1	10	44,286	0	0	44,188	2	13
Q	46,452	1.11	46,175	46,175	1	2	46,175	0	0	46,144	8	137
R	52,531	1.47	52,210	52,210	1	15	52,210	3	57	52,205	5	77
S	77,397	0.16	77,232	77,232	0	0	77,232	2	21	76,999	6	123
T	$144,\!622$	0.07	144,409	144.409	1	8	144.409	2	24	144.350	8	82
ave					0	3		3	38		7	76

Andrea Peano – 25/09/2015

Conclusions

- 2 new Path Relinking neighbourood structures for the response to contamination problem (and for the mTSP)
- Common PRs are effective as intensification strategies
- Current work:
- intensificating GAs
- Design of a new concurrent PR algorithm
- Preliminary results show this novel strategy overcomes GA

Journals

[J2] Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, Marco Franchini. Scheduling countermeasures to contamination events by genetic algorithms. Al Communications. Doi: 10.3233/AIC-140638, vol. 28, no. 2, pp. 259–282, 2015. Doi:10.1093/logcom/ext065. ISI: 000349156700007. Scopus: 2-s2.0-84922560199.

Proceedings of international conferences

[C1] Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and Marco Franchini. Genetic algorithms for scheduling devices operation in a water distribution system in response to contamination events. In J.-K. Hao and M. Middendorf, editors, Evolutionary Computation in Combinatorial Optimization, volume 7245 of Lecture Notes in Computer Science, pages 124–135. Springer Berlin / Heidelberg, 2012. <u>Scopus: 2-s2.0-84859138145</u>.

[C2] Maddalena Nonato and Andrea Peano. Path Relinking for a Constrained
Simulation-Optimization Team Scheduling Problem Arising in Hydroinformatics. In
M. Gavanelli et al. (Eds.): AI*IA 2015, LNAI 9336, pp. 31–44, 2015.

Andrea Peano – 25/09/2015