Path Relinking for a Team Scheduling Problem Arising in Hydroinformatics

Speaker: Andrea Peano

Coauthor: Maddalena Nonato
• What is a contamination event?
• Problem modellization (feasible region + objective function)
• State of the art

• Path relinking strategies
 • Route based PR
 • Hybrid PR

• Results
• Conclusions and future work
Injection of contaminant into the hydraulic network. Contaminant is spreading...

Hydraulic simulations

- No reaction
- 3h after the injection
- Device activation

Injection of contaminant into the hydraulic network. Contaminant is spreading...
Optimizing the schedule

<table>
<thead>
<tr>
<th>Device</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>t_1</td>
</tr>
<tr>
<td>V2</td>
<td>t_2</td>
</tr>
<tr>
<td>V3</td>
<td>t_3</td>
</tr>
<tr>
<td>H1</td>
<td>t_4</td>
</tr>
<tr>
<td>H2</td>
<td>t_5</td>
</tr>
</tbody>
</table>

Hydraulic Simulator
5 seconds

Multiple Travelling Salesman Problem

Technician: A, B
Solving architecture:
- Parallel GAs, plus a
- Intensification step by “Path Relinking”
Path Relinking
by Glover et al. 2000

Legend
- reference solution
- initial solution
- possible move
- selected move
- guiding solution

Path Relinking: intro
Path Relinking
by Glover et al. 2000

Legend
- reference solution
- initial solution
- possible move
- selected move
- guiding solution
Path Relinking
by Glover et al. 2000

Legend
- reference solution
- initial solution
- possible move
- selected move
- guiding solution
Path Relinking
by Glover et al. 2000

Legend
● reference solution
⊗ initial solution
□ possible move
■ selected move
⊕ guiding solution
Path Relinking: solution representations

Route based

\[\text{PRr} \]

Time based

\[\text{PRh} \]
Experimental framework

- Ferrara’s hydraulic network (about 120’000 users)
- 20 contamination scenarios
- Reference set is built up from 10 final population of the GA
- GA, PRr and PRh were limited to 500 simulations

Results

PRh + 1 GA

x 10 times

10 GAs + 1 GA
<table>
<thead>
<tr>
<th>scen</th>
<th>ave</th>
<th>var</th>
<th>best (s*)</th>
<th>dav</th>
<th>best</th>
<th>#</th>
<th>ave</th>
<th>best</th>
<th>#</th>
<th>ave</th>
<th>best</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6,022</td>
<td>0.04</td>
<td>6,000</td>
<td>6,000</td>
<td>0</td>
<td>0</td>
<td>5,997</td>
<td>8</td>
<td>9</td>
<td>6,000</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>7,170</td>
<td>0.10</td>
<td>7,170</td>
<td>7,170</td>
<td>0</td>
<td>0</td>
<td>10,569</td>
<td>3</td>
<td>49</td>
<td>7,156</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>10,868</td>
<td>1.51</td>
<td>10,672</td>
<td>10,672</td>
<td>0</td>
<td>0</td>
<td>12,698</td>
<td>1</td>
<td>5</td>
<td>10,623</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>D</td>
<td>11,229</td>
<td>1.16</td>
<td>11,021</td>
<td>11,021</td>
<td>0</td>
<td>0</td>
<td>10,993</td>
<td>7</td>
<td>44</td>
<td>11,021</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>12,732</td>
<td>0.21</td>
<td>12,698</td>
<td>12,698</td>
<td>1</td>
<td>5</td>
<td>12,698</td>
<td>1</td>
<td>4</td>
<td>12,698</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>F</td>
<td>13,938</td>
<td>0.76</td>
<td>13,793</td>
<td>13,793</td>
<td>1</td>
<td>2</td>
<td>13,624</td>
<td>4</td>
<td>69</td>
<td>13,723</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>G</td>
<td>15,841</td>
<td>0.22</td>
<td>15,758</td>
<td>15,758</td>
<td>0</td>
<td>0</td>
<td>15,758</td>
<td>4</td>
<td>29</td>
<td>15,692</td>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>H</td>
<td>16,991</td>
<td>2.44</td>
<td>16,571</td>
<td>16,571</td>
<td>1</td>
<td>3</td>
<td>15,708</td>
<td>7</td>
<td>207</td>
<td>16,351</td>
<td>9</td>
<td>137</td>
</tr>
<tr>
<td>I</td>
<td>20,792</td>
<td>7.21</td>
<td>20,122</td>
<td>20,122</td>
<td>0</td>
<td>0</td>
<td>20,122</td>
<td>2</td>
<td>50</td>
<td>20,122</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>J</td>
<td>22,273</td>
<td>0.39</td>
<td>22,164</td>
<td>22,164</td>
<td>0</td>
<td>0</td>
<td>22,164</td>
<td>2</td>
<td>8</td>
<td>22,105</td>
<td>9</td>
<td>85</td>
</tr>
<tr>
<td>K</td>
<td>25,138</td>
<td>0.56</td>
<td>25,043</td>
<td>25,043</td>
<td>0</td>
<td>0</td>
<td>25,043</td>
<td>2</td>
<td>50</td>
<td>25,043</td>
<td>7</td>
<td>68</td>
</tr>
<tr>
<td>L</td>
<td>35,067</td>
<td>1.00</td>
<td>34,662</td>
<td>34,662</td>
<td>0</td>
<td>0</td>
<td>34,662</td>
<td>4</td>
<td>136</td>
<td>34,536</td>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>M</td>
<td>36,706</td>
<td>0.52</td>
<td>36,706</td>
<td>36,706</td>
<td>0</td>
<td>0</td>
<td>36,706</td>
<td>1</td>
<td>2</td>
<td>36,706</td>
<td>5</td>
<td>103</td>
</tr>
<tr>
<td>O</td>
<td>42,019</td>
<td>1.68</td>
<td>41,595</td>
<td>41,595</td>
<td>0</td>
<td>0</td>
<td>41,595</td>
<td>0</td>
<td>0</td>
<td>41,595</td>
<td>6</td>
<td>79</td>
</tr>
<tr>
<td>P</td>
<td>44,470</td>
<td>0.34</td>
<td>44,286</td>
<td>44,286</td>
<td>1</td>
<td>10</td>
<td>44,286</td>
<td>0</td>
<td>0</td>
<td>44,188</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Q</td>
<td>46,452</td>
<td>1.11</td>
<td>46,175</td>
<td>46,175</td>
<td>1</td>
<td>2</td>
<td>46,175</td>
<td>0</td>
<td>0</td>
<td>46,144</td>
<td>8</td>
<td>137</td>
</tr>
<tr>
<td>R</td>
<td>52,531</td>
<td>1.47</td>
<td>52,210</td>
<td>52,210</td>
<td>1</td>
<td>15</td>
<td>52,210</td>
<td>3</td>
<td>57</td>
<td>52,205</td>
<td>5</td>
<td>77</td>
</tr>
<tr>
<td>S</td>
<td>77,397</td>
<td>0.16</td>
<td>77,232</td>
<td>77,232</td>
<td>0</td>
<td>0</td>
<td>77,232</td>
<td>2</td>
<td>21</td>
<td>76,999</td>
<td>6</td>
<td>123</td>
</tr>
<tr>
<td>T</td>
<td>144,622</td>
<td>0.07</td>
<td>144,409</td>
<td>144,409</td>
<td>1</td>
<td>8</td>
<td>144,409</td>
<td>2</td>
<td>24</td>
<td>144,350</td>
<td>8</td>
<td>82</td>
</tr>
</tbody>
</table>

Ave: 0 3 | 3 38 | 7 76
Conclusions

• 2 new Path Relinking neighbourood structures for the response to contamination problem (and for the mTSP)
• Common PRs are effective as intensification strategies

Current work:
• intensificating GAs
• Design of a new concurrent PR algorithm
• Preliminary results show this novel strategy overcomes GA
Journals

Proceedings of international conferences
