Defeasible Logic
Programming in Saftisfiability
Modulo CHR

Dipartimento di Matematica e Informatica,
Universita di Perugia, Italy

AIXIA 2015

A Merging Argumentation-based Logic Programming and
Satisfiability-modulo Theories together

A Using Satisfiability-modulo Constraint Handling Rules
= To encode Argumentation-based Logic Programming

A Towards Argumentation-based Constraint Logic
Programming

= (X)Y):=X>Y, B(X), C(Y): where X >Y is a constraint, and A(X, Y),
B(X), C(Y) are literals, as in regular Logic Programming

A Some (current and future) goals
1. Have a unifying framework where to solve different ALP proposals

2. Design propagators (in CHR) on top of different built-in solver (SAT,
bounds, linear arithmetic)

3. Deal with weights (belief degree)
4. Argument-based reasoning in an efficient way

<=> +true.
Y leq X <=> X =Y.

reflexivity @ X leq X

antisymmetry Q X leq Y,

transitivity @Q X leq Y, Y leq Z ==> X leq Z.
Y

idempotence @ X leq \ X leq Y <=> true.

A Execution of a CHR program starts with an initial constraint
store. The program then proceeds by matching rules against
the store and applying them, until either no more rules match
(success)

AGivenaquery A<B,B=<C,C<A

Current constraints Rule applicable to constraints Conclusion from rule application
A leq B, B legq C, C leqg A transitivity A leqg C
A leq B, B leq C, C leq A, A leq C antisymmetry A=C
A leq B, Bleq A, A =C antisymmetry A =B
A=B, A=C none

3 Several proposals in Logic Programming, almost all defined
on the concept of weak and strict rules
- Logic for Defeasible Reasoning (LDR) by Donald Nute '88
- Rules with priorities by Prakken and Sartor ‘97
- Defeasible Logic Programming by Garcia and Simari ‘04

e Facts are ground literals representing atomic information or its negation.

o Strict rules represent non-defeasible rules, and they are represented as
L() — Ll,...,Ln.

o Defeasible rules represent tentative information, in the form of rules like
L() A Ll,...,Ln.

© Jenfu Cheng/Solent News

night. switch_on(a).
~day < night. switch_on(b).
~dark(Y') < illuminated(X). switch_on(c).
11 .
sunday. ~electricity(b).
deadline. ~electricity(c).

emergency _lights(c).

" light_on(X) < switch_on(X).

~lights_on(X) « ~electricity(X).

lights_on(X) «— ~electricity(X), emergency_lights(X).
dark(X) «—~day.

illuminated (X)) «— lights_on(X), ~day.

working_at(X) « illuminated(X).

~working_at(X) « sunday.

working_at(X) <« sunday, deadline.

/* Strict rules x/
night (x) = not day(x);
illuminated (x) = not dark(x);

/* Defeasible rules x/

switchOn(x) = lightsOn (x);

not electricity (x) = not lightsOn (x);

not electricity (x) A emergencylLights(x) = lightsOn (x);
not day(x) = dark(x) ;

not day(x) A lightsOn(x) = illuminated (x) ;
illuminated (x) = workingAt(x) ;

sunday (x) == not workingAt(x) ;

sunday (x) A deadline(x) =— workingAt(x) ;

Facts as constraints:
switchOn(a), switchOn(b), switchOn(c), not electricity(b), not electricity(c),
emergencyLights(c), night(a), night(b), night(c), sunday(a), sunday(b),
sunday(c), deadline(a), deadline(b), deadline(c).

/* Strict rules x/
night (x) = not day(x);
illuminated (x) = not dark(x);

TTUA |~ Q
/* Defeasible rules =x/

switchOn (x) = lightsOn (x);

not electricity (x) = not lightsOn(x);

not electricity (x) A emergencyLights(x) = lightsOn (x);
not day(x) = dark(x);

not day(x) A lightsOn(x) = illuminated (x);
illuminated (x) = workingAt (x);

sunday (x) = not workingAt(x);

sunday (x) A deadline(x) = workingAt (x) ;

A query: Q = illuminated(a) /4 switchOn(a)
The answer is UNKNOWN (i.e., SAT using sat) and 3 new constraints:
lightsOn(a), not dark(a), workingAt(a)

Defeasible rules x/
not electricity (x) = not lightsOn(x) A defeasibleNotLightsOn (x) ;

/ defeasibleNotLightsOn(x) A lightsOn(x) = strictLightsOn (x);
In the paper, how to mark defeasible information

3 Defeasible Logic Programming (P-DeLP) is an extension of

DelLP in which

- rules are attached with weights, belonging to the real unit interval
[0..1] (here [0..100]

- weights express the relative belief or preference strength of
arguments. Each fact p; is associated with a certainty value that
expresses how much the relative fuzzy-statement is believed in
terms of necessity measures.

- Weights are aggregated in accordance to (Pl N ANpr — ¢,)

it (p1, 1), - - -, (Px, Px) and (g, min(a, B1, . . ., Bx))

type swl(num); type sw2(num); type sw3(num); type pumpClog(num); type
pumpFuel (num); type pumpOil(num); type o0ilOk(num); type fuelOk (num);
type engineOk (num); type heat(num); type lowSpeed (num) ;

/* Strict =/

pumpClog(x) = not fuelOk(x); Query: swl (100) A sw2 (100)

/* Defeasible x/] .

swl(x) — x $ <= 60 | pumpFuel(x); Store: engineOk(30) A fuelOk(30) A

swl(x) = x $> 60 | pumpFuel(60); i
ampEuel (x) = x § <= 30| faslOk (x) lowSpeed(80) A not fuelOk (60) A 0|IOk(80) A
pumpFuel(x) = x §> 30 | fuelOk(30); pumpClog (60) N\ pumpFuel (60) N pumpOIl
sw2(x) = x $§<= 80 | pumpOil(x);

sw2(x) = x $§> 80 | pumpOil(80); (80) A swl (100) A SW2 (100)

pumpOil(x) = x $§<= 80 | 0ilOk(x);

pumpOil(x) = x $§> 80 | 0ilOk(80);

0ilOk (x) A fuelOk(y) = x 8<=y A x $<= 30 | engineOk(x);

0ilOk (x) A fuelOk(y) = y $<= x Ay $§<= 30 | engineOk(y);

0ilOk (x) A fuelOk(y) = 30 $<= x A 30 $<=y | engineOk(30);

heat(x) = x $<= 95 | not engineOk(x);

heat(x) = x $> 95 | not engineOk(95);

heat(x) = x $§<= 90 | not 0ilOk(x);

heat(x) = x $> 90 | not 0ilOk(x);

lowSpeed (x) A pumpFuel(y) = x $§<= y A x $<= 70 | pumpClog(x);

lowSpeed (x) A pumpFuel(y) = y $<= x A y $<= 70 | pumpClog(y);

lowSpeed (x) A pumpFuel(y) = 70 $<= x A 70 $ <=y | pumpClog(70);

sw2(x) = x § <= 80 lowSpeed (x) ;
sw2(x) = x $§> 80 | lowSpeed(80);

sw3(x) A sw2(y) = x 8§<=y A x 8<= 80 | not lowSpeed(x);
sw3(x) A sw2(y) = y $<= x Ay $3<= 80 | not lowSpeed(y);
sw3(x) A sw2(y) = 80 $§<= x A 80 $§<= y | not lowSpeed(80);
sw3(x) = x $§ <= 60 | fuelOk(x);

sw3(x) = x §> 60 | fuelOk(80);

Acquario Room (G-GF)

Contacts:

francesco.santini@dmi.unipg.it

