

<u>Cooperative Self-Organizing System for low</u> Carbon <u>Mobility at low Penetration Rates</u>

Swarm-based Controller for Traffic Lights Management Federico Caselli*, Alessio Bonfietti, Michela Milano University of Bologna AI*IA, 24 September 2015

COLOMBO consortium

© COLOMBO consortium, 2012

Main objective

Design and implement a self-organizing, adaptive, distributed and monitoring-aware approach to **traffic light control**

- Based on information coming from V2X communication
- Automatically selecting the proper policy
- Receiving feedback on its choice
- Automatically tuned

Self-organizing traffic light control: the concept

Control Loop

- Sensing
- Policy selection
- Policy execution
- Evaluation
- Feedback

We developed the **Swarm controller** based on swarm intelligence concepts

Traffic light controller policies

Different traffic situations need different policies
Policy specialization

- Low traffic
- High traffic
- Not homogeneous traffic
- Congestions & burst
- Selection of the lanes and the length of the green phase

Pheromone

- Pheromone abstracts traffic conditions
- > Every car leaves a **virtual pheromone trail** on the road
- Pheromone proportional to the level of congestion
- More robust than simply counting vehicles (w.r.t. incomplete information)

Pheromone

The pheromone computation relies on the **average speed** and its derivative (**acceleration**) of the vehicles.

 $f_{l}(k+1) = \beta f_{l}(k) + \gamma v(l,k); f_{l}(0) = 0$

$$v(l,k) = \frac{MaxSpeed(l) - MeanVehicleSpeed(l,k)}{\frac{dMeanVehicleSpeed(l,k)}{dk}}$$

Policy selection

- Specialized policies for every traffic conditions
- > The controller is pushed to **chose a policy**
- Probabilistic selection
- Each policy has its own stimulus function
- The stimulus functions are represented by a set of Gaussians in the pheromone space

$$s_{i,j}: [0, f_{max}] \times [0, f_{max}] \rightarrow \mathbb{R}^+$$

COLOMBC

Synthetic but realistic scenarios

COLOI Monza scenario: a real world example

© COLOMBO consortium, 2012

Realistic traffic conditions

Considering realistic daily load curves

Penetration Rate

Comparing the Swarm Controller With:

Classic Static Controller

Actuated Controller (inductive loops knowledge -> 100%)

Swarm Controller (inductive loops knowledge → 100%)

Swarm Controller (incomplete knowledge → 25%)

Evaluation on the average waiting time

Monza results

COLO

Conclusions

- We developed a swarm based traffic light controller
- Extensive evaluations shows promising results
- > The system has been extended to manage:
 - Pedestrian
 - Bicycles
 - Emergency vehicles
 - Public transport

