Cooperating with Trusted Parties Would Make Life Easier

Pasquale Caianiello, Stefania Costantini, Giovanni De Gasperis, and Subhasis Thakur

DISIM Università dell'Aquila

Promoting cooperation in the iterated Prisoner Dilemma

- Costly prior commitment
- Penalty for defection
- Trust and reputation
- Probabilistic strategies

AI*IA 2015 Pasquale Caianiello

The Prisoner Dilemma

Α

Payout matrix B
T>P>R>S

Nash Equilibrium
A plays D ... B plays D

- Problem: How to promote a more rewarding situation?
- A plays C ... B plays C

Committed Iterated Prisoner Dilemma

- A population of agents iteratively playing PD with random opponents
- Before playing their move players may make commitments
- Commitment has a cost ε
- There is a penalty δ if commitments are not respected

Agent	propose	accept	play C with commit	play C without commit
С	always	always	always	always
D	never	never	N/A	never
COMP	always	always	always	never
FAKE	never	always	never	never
FREE	never	always	always	never
BASTARD	always	always	never	never
SCHIZO	always	always	never	always
SILLY	never	never	N/A	always
RANDOM	P=1/2	P=1/2	P=1/2	P=1/2

Latest literature deals by and large on analysis and simulations about relative performance of the agents C,D,COMP,FAKE,FREE depending on values of ϵ and δ .

Trust and Reputation

- When playing the agent knows the index of *trustworthyness* θ and *reputation* ρ of the opponent
- trust measures the agent willingness to comply with commitments (plays C when a commitment is established)
- reputation measures the agent willingness to play C

 δ and ρ are globally maintained during game iterations. They start at 0 for every agents and are uptated with the reinforcement rule

 $x(t+1):=x(t)+\Delta x$

Update rules

 $\begin{array}{l} \square \\ +\alpha(1-\theta) \text{ if commit and play C} \\ \Delta\theta = -\alpha\theta \text{ if commit and play D} \\ \square & 0 \text{ if no commit} \end{array}$

 $+\alpha(1 - \rho)$ if play C $\Delta \rho = -\alpha \rho$ if play D

where $0 < \alpha < 1$ and drives the rate of change of θ and ρ during subsequent rounds.

Probabilistic Agents Strategies

 By using θ and ρ we can define new agents whose playing choices are probabilistic

Agent	propose	accept	play C on commit	play C on no commit
TRUST	Ρ=θ	always	Ρ=θ	Ρ=ρ
TRUST C	Ρ=θ	Ρ=θ	always	Ρ=ρ
REP	never	never	Ρ=ρ	Ρ=ρ
DIPLOMAT	always	always	Ρ=ρ*θ	Ρ=ρ

SIMULATIONS

- A population of 100 agents randomly chosen with uniform probability among the 12 different agent types, for 10.000 rounds
- At each iteration two players are chosen at random
- Trust and reputation are updated at every iteration

Chance and luck do play a role in the Iterated Prisoner Dilemma

Conclusion

Today

- Profiling agents with trust and reputation provides a means for promoting cooperation
- Simple probabilistic strategies based on trust and reputation improve performance in cooperation games

Maybe tomorrow

 Better, more complex profiling

 Improve performance with better informed, more complex, and *adaptive* strategies