
Learning Static Constraints For Domain Modelling
From Training Plans

Rabia Jilani

University of Huddersfield, UK

Outline

• Introduction

• Simple Domain Model Operator

• LOCM (Learning Object-Centred Models)

• Static Knowledge– What is it?

• LOCM Limitation

• ASCoL (Automated Static Constraint Learner)

• LOCM -The learning problem

• ASCoL -The learning problem

• ASCoL Algorithm (Order/Graph Detector OD)

• Process Summary

• Types of Graphs

• Evaluation

• Evaluation: Challenges

• Conclusion and Future Work

AI*IA 2015

Introduction

• Intelligent agents performing in the real-world use AI Planning,
which requires domain models of the world to plot their
actions

Machine tool calibration

RoboticsNASA Mars Rover

AI*IA 2015

Introduction

• Conventionally such models are hand-coded... time consuming,
error prone

• Motivated by the importance of the knowledge formulation
process to make intelligent agents fully automatic and planning
engines more accessible, several systems learn models
autonomously from training action plans traces–LOCM, ARMS,
Opmaker etc.

(Cresswell et al., 2009) (Yang, Q. et al., 2007) (McCluskey, T.L. et al., 2002)

• Particular challenges:
• Input Requirements (amount of application knowledge as input)

• Extent of Learning in output

AI*IA 2015

Planning Domain Model Operator (Example)

(:action sail

:parameters (?from ?to - location)

:precondition (and (not-eq ?from ?to)

(location ?from)

(location ?to)

(at-ferry ?from))

:effect (and (at-ferry ?to)

(not (at-ferry ?from)))

)

Planning domain model is the specification of the Object types, states
(predicates), and dynamics of the domain of planning.

AI*IA 2015

LOCM (Learning Object-Centred Models)

(ICAPS 2009 by Cresswell, McCluskey and West)

• Learns domain models from logged sequences of actions
(plans) only

• No need for information such as predicate specification or state
information (Cresswell et al., 2013)

“The only exception to this is the option to specify a “static”
precondition, necessary in some domains which require static

knowledge.” (Cresswell et al., 2013)

AI*IA 2015

Static Knowledge – What is it?

Relationships/properties that never change in the world and

are implicit in the domain model but would not be

directly expressed in plan traces

• Static facts are conditions required by the environment. These are represented by
predicates that appear only in preconditions of operators and that restrict the
values of certain variables, that’s why we call it Constraints

Let

O ={O1, . . . ,On(O)} set of operators

P = {P1, . . . , Pm(P)} set of all predicates

A predicate Pi ϵ P is Static iff there is no operator Oj ϵ O that has an effect that uses
the predicate Pi. Otherwise the predicate is Fluent (Wickler, G. KEPS 2011)

AI*IA 2015

Example
• The drive operator of the traveling domain model (IPC)
• connected predicate is a static relation between two places.
• There is no operator in the whole domain model that changes the connected predicate

• What if the static predicate/s is/are not present in the operator?

AI*IA 2015

LOCM Limitations

• LOCM declares static constraints manually as follows:
static(connected(C1,C2), drive(C2,C1,_,_))

• the layout of roads in driverlog domain (connect location1, location2)

• the level of floors in miconic domain (above floor3, floor4)

• the fixed relationships between specific cards in freecell (Successor D3, H5)

AI*IA 2015

ASCoL (Automated Static Constraint Learner)

• A tool that exploits graph analysis for automatically identifying static relations
(relationships/properties that never change in the world) in order to enhance
planning domain models by observing a set of training plan traces

• We enhance the output domain model of the LOCM system to capture static domain
constraints from the same set of input training plans as used by LOCM

• We then generate an enhanced domain model by adding in learnt static facts
(constraints)

Inputs and Output general structure of ASCoL

AI*IA 2015

LOCM -The learning problem

sequence_task(15, [board(c12, l2), sail(l2, l1),

debark(c12, l1), board(c1, l1), sail(l1, l3), debark(c1,

l3), board(c11, l3), sail(l3, l4), debark(c11, l4),

board(c3, l4), sail(l4, l1), debark(c3, l1), board(c2, l1),

sail(l1, l3), debark(c2, l3), board(c24, l3), sail(l3, l4),

debark(c24, l4), board(c9, l4), sail(l4, l2), debark(c9,

l2), board(c15, l2), sail(l2, l0), debark(c15, l0),

board(c4, l0), sail(l0, l4), debark(c4, l4), board(c10,

l4), sail(l4, l0), debark(c10, l0), board(c6, l0), sail(l0,

l4), debark(c6, l4), board(c14, l4), sail(l4, l1),

debark(c14, l1), board(c8, l1), sail(l1, l3), debark(c8,

l3), board(c25, l3), sail(l3, l0), debark(c25, l0),

board(c13, l0), sail(l0, l2), debark(c13, l2), board(c17,

l2), sail(l2, l0), debark(c17, l0), board(c21, l0), sail(l0,

l1), debark(c21, l1), board(c16, l1), sail(l1, l4),

debark(c16, l4), board(c18, l4), sail(l4, l0),

debark(c18, l0), board(c26, l0), sail(l0, l3),

debark(c26, l3)], _, _).

(define

(domain ferry)

(:requirements :typing)

(:types c l)

(:predicates

(c_state_1_1 ?v1 - c)

(c_state_1_2 ?v1 - c)

(c_state_1_3 ?v1 - c)

(l_state_1_1 ?v1 - l)

(l_state_1_2 ?v1 - l))

(:action

board

:parameters

(?C1 - c ?L2 - l)

:precondition

(and

(l_state_1_1 ?L2)

(c_state_1_1 ?C1))

:effect

(and

(c_state_1_2 ?C1)

(not (c_state_1_1 ?C1))))

(:action

debark

:parameters

(?C1 - c ?L2 - l)

:precondition

(and

(l_state_1_1 ?L2)

(c_state_1_2 ?C1))

:effect

(and

(c_state_1_3 ?C1)

(not (c_state_1_2 ?C1))))

(:action

sail

:parameters

(?L1 - l ?L2 - l)

:precondition

(and

(l_state_1_2 ?L2)

(l_state_1_1 ?L1))

:effect

(and

(l_state_1_1 ?L2)

(not (l_state_1_2 ?L2))

(l_state_1_2 ?L1)

(not (l_state_1_1 ?L1)))))

Input Plan Traces

Output Domain Definition

LOCM

ASCoL -The learning problem

sequence_task(15, [board(c12, l2), sail(l2, l1), debark(c12, l1),

board(c1, l1), sail(l1, l3), debark(c1, l3), board(c11, l3), sail(l3, l4),

debark(c11, l4), board(c3, l4), sail(l4, l1), debark(c3, l1), board(c2,

l1), sail(l1, l3), debark(c2, l3), board(c24, l3), sail(l3, l4),

debark(c24, l4), board(c9, l4), sail(l4, l2), debark(c9, l2), board(c15,

l2), sail(l2, l0), debark(c15, l0), board(c4, l0), sail(l0, l4), debark(c4,

l4), board(c10, l4), sail(l4, l0), debark(c10, l0), board(c6, l0), sail(l0,

l4), debark(c6, l4), board(c14, l4), sail(l4, l1), debark(c14, l1),

board(c8, l1), sail(l1, l3), debark(c8, l3), board(c25, l3), sail(l3, l0),

debark(c25, l0), board(c13, l0), sail(l0, l2), debark(c13, l2),

board(c17, l2), sail(l2, l0), debark(c17, l0), board(c21, l0), sail(l0,

l1), debark(c21, l1), board(c16, l1), sail(l1, l4), debark(c16, l4),

board(c18, l4), sail(l4, l0), debark(c18, l0), board(c26, l0), sail(l0,

l3), debark(c26, l3)], _, _).

Input Plan Traces (P)

Input Types’ Information (T)

Static Preconditions (Constraints)

connected(loc1 loc2)
...

Every domain has separate

static background

Input plan traces contain tacit knowledge about constraints validation/acquisition

Input : a tuple (P, T), P = plan traces ,T = types of action arguments in P

Output : R = constraint repository

ASCoL

Output (R)

(define

(domain ferry)

(:requirements :typing)

(:types c l)

(:predicates

(c_state_1_1 ?v1 - c)

(c_state_1_2 ?v1 - c)

(c_state_1_3 ?v1 - c)

(l_state_1_1 ?v1 - l)

(l_state_1_2 ?v1 - l))

(:action

board

:parameters

(?C1 - c ?L2 - l)

:precondition

(and

(l_state_1_1 ?L2)

(c_state_1_1 ?C1))

:effect

(and

(c_state_1_2 ?C1)

(not (c_state_1_1 ?C1))))

(:action

debark

:parameters

(?C1 - c ?L2 - l)

:precondition

(and

(l_state_1_1 ?L2)

(c_state_1_2 ?C1))

:effect

(and

(c_state_1_3 ?C1)

(not (c_state_1_2 ?C1))))

(:action

sail

:parameters

(?L1 - l ?L2 - l)

:precondition

(and

(l_state_1_2 ?L2)

(l_state_1_1 ?L1))

:effect

(and

(l_state_1_1 ?L2)

(not (l_state_1_2 ?L2))

(l_state_1_2 ?L1)

(not (l_state_1_1 ?L1)))))

Process Summary

1. Read the partial domain model and the plan traces.

2. Identify, for all operators, all the pairs of arguments involving the same object
types.

3. For each of the pairs, generate a directed graph by considering the objects
involved in the matching actions from the plan traces.

4. Analyze the order of graphs and extract hidden static relations between
arguments.

5. Run inequality/reflexivity check.

6. Return the extended domain model that includes the identified static relations.

AI*IA 2015

Algorithm (Order Detector OD)

AI*IA 2015

Types of Graphs
Linear Graph

sendCardsHome (card, card, suit, num, card, num)

Disconnected Graph
sendCardsHome (card, card, suit, num, card, num)

Connected Graph
Walk (person, path1, path2)

Cyclic Graph
Drive (driver, truck, locA, locB)

Evaluation

number of operators (# Operators), total number of static relations (# SR) are presented, number of identified static relationships (Learnt
SR), number of additional static relations provided (Additional SR) , number of plans (#Plans), average number of actions per plan (A/P), CPU-
time in milliseconds

• Input plans generated using Metric-FF planner on randomly generated problems

• Implemented in Java, and run on a Core 2 Duo/8GB processor
AI*IA 2015

Evaluation: Challenges

• For plan traces to exist there must be a comprehensive domain
that should exist at least in the toy domain category, to
evaluate the results of the system

• Traces only provide examples of valid operating states, so these
cannot be used to change an invalid constraint to a valid
constraint

• Traces may be inadequate to fully learn states and constraints
(Grant, T. 2010)

• No information about predicates or initial, goal or intermediate
state descriptions for the input example action sequences

AI*IA 2015

Conclusion and Future Work

• We introduced ASCoL, an efficient and effective method for identifying
static knowledge missed by domain models automatically acquired

• To extend our approach for considering static relations that involve more
than two arguments

• To extend the approach for merging graphs of different pairs of arguments

• To identify heuristics for extracting useful information also from acyclic
graphs Analysis and evaluation of the ASCoL with other constraint
acquisition systems

AI*IA 2015

Thank you

AI*IA 2015

