Ontology-Based Semantic Image Interpretation

Ivan Donadello1,2 \hspace{1cm} Luciano Serafini (Advisor)1

1Fondazione Bruno Kessler, Via Sommarive, 18 I-38123, Trento, Italy

2DISI University of Trento, Via Sommarive, 9 I-38123, Trento, Italy

September 23, 2015
Context

- Huge diffusion of digital images in recent years;
- lack of semantic based retrieval systems for images, that is no complex queries: “a person riding a horse on a meadow”;
- semantic gap between numerical image features and human semantics;
- need a method that automatically understands the **semantic content of images**.

Relevance:

- semantic content based image retrieval via a query language;
- semantic content enrichment with Semantic Web resource.
Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;
Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- **nodes** represent visible and occluded objects in the image and their properties;
Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- **nodes** represent visible and occluded objects in the image and their properties;
- **arcs** represent relations between objects;
Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- **nodes** represent visible and occluded objects in the image and their properties;
- **arcs** represent relations between objects;
- **alignment** between visible object regions and nodes;
Problem Statement

Semantic Image Interpretation (SII) is the task of extracting a graph representing the image content;

- **nodes** represent visible and occluded objects in the image and their properties;
- **arcs** represent relations between objects;
- **alignment** between visible object regions and nodes;
- an ontology provides the formal semantics and constraints that guide the graph construction;
Aim of the Doctoral Thesis

- Define a theoretical reference framework for SII;
- implementation of a system for SII;
- graph construction guided by mixing:
 - numeric information (low-level features of the image);
 - symbolic information (high-level constraints available in the ontology);
- perform system evaluation on a ground truth of semantically interpreted images.
Logic-Based Works (2014)

- a first description of the image (basic object recognition and their relations) is given;
- model generation (deduction or abduction) by exploiting the ontology.

Neural Networks-based (NN) works (2015)

- Caption generation;
State-of-the-art on SII

Logic-Based Works (2014)

▶ a first description of the image (basic object recognition and their relations) is given;
▶ model generation (deduction or abduction) by exploiting the ontology.

Neural Networks-based (NN) works (2015)

▶ Caption generation;

Limitations

▶ Logic-based works: no consideration for low-level features;
▶ NN works: no formal semantics and a priori knowledge.
SII Pipeline
SII Pipeline

Semantic Segmentation

Labels

Ontology

Head 0.8
Arm 0.7
Muzzle 0.1
Horse 0.6
Leg 0.7
Pole 0.8
Horse 0.6
Leg 0.6
Art 0.8
Horse 0.7
Leg 0.4
Meadow 0.5
Leg 0.5
Our Vision of SII

Finding the maximum of a joint search space composed of semantic features and image features.
Theoretical Framework

Background Knowledge
encoded in a Description Logic ontology \mathcal{O}.

Labelled picture is a pair $\mathcal{P} = \langle S, L \rangle$ where S are segments of the image, L are (weighted) labels from Σ.

![Diagram of a horse and rider, labeled with parts and weights]
The Partial Model

- A picture is a partial view of the real world;

- A partial model \mathcal{I}_p is a structure that can be extended to a model of \mathcal{O};
The Partial Model

- A picture is a partial view of the real world;

- A partial model \mathcal{I}_p is a structure that can be extended to a model of \mathcal{O};

- A partial model of an ontology \mathcal{O} is an interpretation $\mathcal{I}_p = (\Delta_{\mathcal{I}_p}, \cdot_{\mathcal{I}_p})$ of \mathcal{O}: there exists a model $\mathcal{I} = (\Delta_{\mathcal{I}}, \cdot_{\mathcal{I}})$ with $\Delta_{\mathcal{I}_p} \subseteq \Delta_{\mathcal{I}}$ and $\cdot_{\mathcal{I}_p}$ is a restriction of $\cdot_{\mathcal{I}}$ on $\Delta_{\mathcal{I}_p}$.
The Partial Model

- A picture is a partial view of the real world;

- A partial model \mathcal{I}_p is a structure that can be extended to a model of \mathcal{O};

- A partial model of an ontology \mathcal{O} is an interpretation $\mathcal{I}_p = (\Delta^{\mathcal{I}_p}, \cdot^{\mathcal{I}_p})$ of \mathcal{O}: there exists a model $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ with $\Delta^{\mathcal{I}_p} \subseteq \Delta^{\mathcal{I}}$ and $\cdot^{\mathcal{I}_p}$ is a restriction of $\cdot^{\mathcal{I}}$ on $\Delta^{\mathcal{I}_p}$.

- A semantically interpreted picture is a triple $(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_\mathcal{O}$;
The Most Plausible Partial Model

Many partial models for a picture

Searching for the partial model that best fits the picture content, i.e. the most plausible partial model.
The Semantic Image Interpretation Problem

Formalization

- A **cost function** S assigns a cost to semantically interpreted pictures $(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_\mathcal{O}$;
- $S(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_\mathcal{O}$ expresses the gap between low-level features of \mathcal{P} and objects and relations encoded in \mathcal{I}_p;
- the **most plausible partial model** \mathcal{I}_p^* minimizes S:

$$\mathcal{I}_p^* = \arg\min_{\mathcal{I}_p \models \mathcal{O}} S(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_\mathcal{O}$$

- the **semantic image interpretation problem** is the construction of $(\mathcal{P}, \mathcal{I}_p^*, \mathcal{G})_\mathcal{O}$ that minimizes S.
Task: **part-whole recognition**, i.e., discovery complex objects from their parts;

part-whole recognition can be seen as a **clustering problem**;
- parts of the same object tend to be grouped together;
Case Study: Clustering-Based Cost Function

- Task: **part-whole recognition**, i.e., discovery complex objects from their parts;
- part-whole recognition can be seen as a **clustering problem**;
 - parts of the same object tend to be grouped together;

- cost function as a clustering optimisation function.
Case Study: Clustering-Based Cost Function

- Clustering: grouping a set of input elements into groups (clusters) such that:

\[
C_d = \{ G(d') | d' \in \Delta I_p, \langle d, d' \rangle \in \text{hasPart} I_p \}
\]

\[\text{intra-cluster distance minimized}\]

\[\text{inter-cluster distance maximized}\]
Case Study: Clustering-Based Cost Function

- Clustering: grouping a set of input elements into groups (clusters) such that:

 - Clustering solution of \((\mathcal{P}, \mathcal{I}_p, \mathcal{G})_O\) is \(\mathcal{C} = \{C_d \mid d \in \Delta_{\mathcal{I}_p}\}\)
 where \(C_d = \{\mathcal{G}(d') \mid d' \in \Delta_{\mathcal{I}_p}, \langle d, d' \rangle \in \text{hasPart}_{\mathcal{I}_p}\}\);

- \(d\) represents the composite object, the centroid of the cluster;
Mixing numeric and semantic features:

- **grounding distance** $\delta_G(d, d')$: the Euclidean distance between the centroids of $G(d)$ and $G(d')$;
- **semantic distance** $\delta_O(d, d')$ is the shortest path in O:

- if $\text{Muzzle}(d')$, $\text{Tail}(d'')$ then $\delta_O(d', d'') = 2$;
- if $\text{Muzzle}(d')$, $\text{Horse}(d)$ then $\delta_O(d', d) = 1$;
Case Study: Clustering-Based Cost Function

- **Inter-cluster distance** Γ:

- **Intra-cluster distance** Λ:

- **Cost function**:

$$ S(\mathcal{P}, \mathcal{I}_p, \mathcal{G})_\mathcal{O} = \alpha \cdot \Gamma + (1 - \alpha) \cdot \Lambda $$
Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.

Labelled Picture Features extraction

Semantic distances w.r.t. the other segments

face1: <2.3, 4.5, 2 ... 6>
arm1: <1.3, 2.5, 3 ... 4>

centroids
The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
Minimising the Cost Function

The Clustering Part-Whole Algorithm (CPWA) approximates the minimum of the cost function.
Evaluation

Comparing the predicted partial model with the ground truth, two measures:

- **grouping (GRP):**

![Diagram showing grouping (GRP)]
Evaluation

Comparing the predicted partial model with the ground truth, two measures:

- **grouping (GRP):**

- **complex-object type prediction (COP):**
Evaluation

Comparing the predicted partial model with the ground truth, two measures:

- **grouping (GRP):**

 ![Diagram showing grouping (GRP)]

- **complex-object type prediction (COP):**

 ![Diagram showing complex-object type prediction (COP)]

- precision, the fraction of predicted pairs that are correct;
- recall, the fraction of correct pairs that are predicted.
Experiments and Results

Experiments Setting

▶ **Ground truth** of 203 manually obtained labelled pictures on the urban scene domain;
▶ manually built **ontology** with basic formalism of meronymy of the domain;
▶ **task**: discovering complex objects from their parts in pictures.

Results

<table>
<thead>
<tr>
<th></th>
<th>prec_{GRP}</th>
<th>rec_{GRP}</th>
<th>F1_{GRP}</th>
<th>prec_{COP}</th>
<th>rec_{COP}</th>
<th>F1_{COP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPWA</td>
<td>0.61</td>
<td>0.89</td>
<td>0.67</td>
<td>0.73</td>
<td>0.75</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Experiments and Results

Experiments Setting

- **Ground truth** of 203 manually obtained labelled pictures on the urban scene domain;
- manually built **ontology** with basic formalism of meronymy of the domain;
- **task**: discovering complex objects from their parts in pictures.

Results

<table>
<thead>
<tr>
<th></th>
<th>$ prec_{GRP}$</th>
<th>$ rec_{GRP}$</th>
<th>$ F1_{GRP}$</th>
<th>$ prec_{COP}$</th>
<th>$ rec_{COP}$</th>
<th>$ F1_{COP}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPWA</td>
<td>0.61</td>
<td>0.89</td>
<td>0.67</td>
<td>0.73</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.45</td>
<td>0.71</td>
<td>0.48</td>
<td>0.66</td>
<td>0.69</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- **Baseline**: clustering without semantics;
Experiments and Results

Experiments Setting

- **Ground truth** of 203 manually obtained labelled pictures on the urban scene domain;
- manually built **ontology** with basic formalism of meronomy of the domain;
- **task**: discovering complex objects from their parts in pictures.

Results

<table>
<thead>
<tr>
<th></th>
<th>prec<sub>GRP</sub></th>
<th>rec<sub>GRP</sub></th>
<th>F<sub>1</sub><sub>GRP</sub></th>
<th>prec<sub>COP</sub></th>
<th>rec<sub>COP</sub></th>
<th>F<sub>1</sub><sub>COP</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPWA++</td>
<td>0.67</td>
<td>0.81</td>
<td>0.71</td>
<td>0.71</td>
<td>0.82</td>
<td>0.86</td>
</tr>
<tr>
<td>CPWA</td>
<td>0.61</td>
<td>0.89</td>
<td>0.67</td>
<td>0.73</td>
<td>0.75</td>
<td>0.74</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.45</td>
<td>0.71</td>
<td>0.48</td>
<td>0.66</td>
<td>0.69</td>
<td>0.66</td>
</tr>
</tbody>
</table>

- **Baseline**: clustering without semantics;
- **CPWA++**: improved version of CPWA;
Conclusions and Future Work

- Theoretical framework for SII: partial model that minimizes a cost function;
- cost function as a clustering optimization function;
- clustering algorithm that approximates the cost function;
- explicitly using semantics improves the results;
- future work:
Conclusions and Future Work

- Theoretical framework for SII: partial model that minimizes a cost function;
- cost function as a clustering optimization function;
- clustering algorithm that approximates the cost function;
- explicitly using semantics improves the results;
- future work:
 - integrating of semantic segmentation algorithms;
 - generalizing to other relations;
 - extending the evaluation to a standard dataset;
 - using general purposes ontologies;
Thanks for listening

Questions?