
A Challenging, though Necessary, Marriage

Marco Montali
Free University of Bozen-Bolzano

..

KRDB
1

Data and Processes:

1

2

Our Starting Point

Marrying processes and data is a must if we
want to really understand how complex dynamic

systems operate

Dynamic systems of interest:
• business processes
• multiagent systems
• distributed systems

3

Complex Systems Lifecycle

4

picture by Wil van der Aalst

Formal Verification

Automated analysis
of a formal model of the system
against a property of interest,

considering all possible system behaviors
5

picture by Wil van der Aalst

Our Thesis
Knowledge representation and  

computational logics  
 

can become a swiss-army knife to  
 

understand data-aware dynamic systems,
and  

provide automated reasoning and verification
capabilities along their entire lifecycle

6

 Warning!
Towards this goal, I believe we have to:

• foster cross-fertilization with related fields
such as database theory, formal methods,
business process management, information
systems

• systematically classify the sources of
undecidability and complexity, so as to
attack them when developing concrete tools

• continuously validate how foundational
results relate to practice

7

Practice

8

PracticeBPMN

Declare

UML YAWL

AUML

FCL

GSM

ORMCMMN

ACM
Bloom

JADE

Dedalus
E-R

OWL

EPC

JASON

BPEL

SQL

SBVR

+ methodologies

9

Theory

10

Theory
Theorem

Theorem
Theorem

Theorem
Theorem

Theorem
Theorem

Theorem

Theorem
TheoremTheorem

Theorem

11

Our Approach

1. Develop formal models for data-aware dynamic systems

2. Show that they can capture concrete modeling languages

3. Outline a map of (un)decidability and complexity

4. Find robust conditions for decidability/tractability

5. Bring them back into practice

6. Implement proof-of-concept prototypes
12

Outline: 3 Acts

1. Loneliness

2. Marriage

3. Hate and love

13

? ?

Loneliness
Act 1

14

The Three Pillars of Complex Systems

System

ProcessesData Resources

In AI and CS, we know a lot about each pillar!
15

Information Assets
• Data: the main information source about the history

of the domain of interest and the relevant aspects
of the current state of affairs

• Processes: how work is carried out in the domain
of interest, leading to evolve data

• Resources: humans and devices responsible for
the execution of work units within a process

We focus on the first two aspects!16

State of the Art
• Traditional isolation between processes and data

• Why? To attack the complexity (divide et impera)

• AI has greatly contributed to these two aspects
• Data: knowledge bases, conceptual models,

ontologies, ontology-based data access and
integration, inconsistency-tolerant semantics, …

• Processes: reasoning about actions, temporal/
dynamic logics, situation/event calculus, temporal
reasoning, planning, verification, synthesis, …

17

Application Domains
Data Process

Business
Process

Management

• Information system • Activities + events
• Control-flow

constraints
• External inputs

Multiagent
Systems

• Knowledge of agents
• Institutional

knowledge

• Speech acts
• Creation of new

objects
• Interaction protocols

Distributed
Systems

• Facts maintained by
the system nodes

• Exchanged
messages

• Application-level
inputs

• Node computations18

Loneliness in BPM

19

Data/Process Fragmentation
• A business process consists of a set of activities that

are performed in coordination in an organizational and
technical environment [Weske, 2007]

• Activities change the real world
• The corresponding updates are reflected into the

organizational information system(s)
• Data trigger decision-making, which in turn determines

the next steps to be taken in the process

• Survey by Forrester [Karel et al, 2009]: lack of
interaction between data and process experts

20

Experts Dichotomy
• BPM professionals: think that data are subsidiary to

processes, and neglect the importance of data quality

• Master data managers: claim that data are the main
driver for the company’s existence, and they only focus
on data quality

• Forrester: in 83/100 companies, no interaction at all
between these two groups
• This isolation propagates to languages and tools,

which never properly account for the process-data
connection

21

Conventional Data Modeling
Focus: revelant entities, relations, static constraints

Supplier ManufacturingProcurement/Supplier

Sales

Customer PO Line Item

Work OrderMaterial PO

*

*

spawns0..1

Material

But… how do data evolve?
Where can we find the “state” of a purchase order?

22

Conventional Process Modeling
Focus: control-flow of activities in response to events

But… how do activities update data?
What is the impact of canceling an order?

23

Do you like Spaghetti?
Manage

Cancelation
ShipAssembleManage

Material POs
Decompose

Customer PO

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Customers Suppliers&CataloguesCustomer POs Work Orders Material POs

IT integration: difficult to manage, understand, evolve
24

The Need of Conceptual Integration

• [Meyer et al, 2011]: data-process integration
crucial to assess the value of processes and
evaluate KPIs

• [Dumas, 2011]: data-process integration crucial to
aggregate all relevant information, and to suitably
inject business rules into the system

• [Reichert, 2012]: “Process and data are just two
sides of the same coin”

25

Business Entities/Artifacts
Data-centric paradigm for process modeling
• First: elicitation of relevant business entities that are

evolved within given organizational boundaries
• Then: definition of the lifecycle of such entities, and

how tasks trigger the progression within the
lifecycle

• Active research area, with concrete languages
(e.g., IBM GSM, OMG CMMN)

• Cf. EU project ACSI (completed)

26

Loneliness in  
Social Commitments

27

Social Commitments
Semantics for agent interaction that abstracts
away from the internal agent implementation
• [Castelfranchi 1995]: social commitments as

a mediator between an individual and its
“normative” relation with other agents

• Extensively adopted for flexible specification
of multiagent interaction protocols, business
contracts, interorganizational business
processes (cf. work by Singh et al)

28

Conditional Commitments

• When condition ɸ holds, the debtor agent
becomes committed towards the creditor
agent to make condition ᴪ true

• Agents change the state of affairs implicitly
causing conditions to become true/false

• Commitments are consequently progressed
reflecting the normative state of the interaction

CC(debtor,creditor,ɸ,ᴪ)

29

Literature Example
• Contract between Bob (seller) and Alice (customer):

• Actions available to agents:

CC(bob,alice,item_paid,item_owned)

pay_with_cc causes item_paid
send_by_courier causes item_owned
deliver_manually causes item_owned

30

Literature Example
• Contract between Bob (seller) and Alice (customer):

• Actions available to agents:

CC(bob,alice,item_paid,item_owned)

pay_with_cc causes item_paid
send_by_courier causes item_owned
deliver_manually causes item_owned

31

Is this satisfactory???

Reality
• Multiple customers, sellers, items 

—> Many-to-many business relations established
as instances of the same contractual commitment

• Need of co-referencing commitment instances
through agents and the exchanged data
• If Bob gets paid by Alice for a laptop, then Bob is

commitment to ensure that Alice owns that laptop

• More in general, see work by Ferrario and Guarino
on service foundations

32

From the Literature to Reality

(At least) two fixes required [Montali et al, 2014]:
1. Agent actions/messages must carry an explicit

data payload (Alice pays an item with cc)
2. Commitments and dynamics have to become

data-aware

forall Seller S, Customer C, Item I.
CC(S,C,Paid(C,I,S),Owned(C,I))

33

Formal Verification
The Conventional, Propositional Case

Process control-flow
Agent behaviors/protocols

(Un)desired property
34

(Un)desired property

Finite-state
transition
system

Propositional
temporal formula|= �

Formal Verification
The Conventional, Propositional Case

Process control-flow
Agent behaviors/protocols

35

(Un)desired property

Finite-state
transition
system

Propositional
temporal formula|= �

Verification
via model checking
2007 Turing award:

Clarke, Emerson, Sifakis

Formal Verification
The Conventional, Propositional Case

Process control-flow
Agent behaviors/protocols

36

Marriage
Act 2 37

Process+Data
Data-aware agent behaviors/protocols

(Un)desired property

Formal Verification
The Data-Aware Case

38

(Un)desired property

First-order
temporal formula|= �

Process+Data
Data-aware agent behaviors/protocols

Formal Verification
The Data-Aware Case

Infinite-state, relational
transition system [Vardi 2005]39

(Un)desired propertyInfinite-state, relational
transition system

First-order
temporal formula|= �

?Process+Data
Data-aware agent behaviors/protocols

Formal Verification
The Data-Aware Case

40

Why FO Temporal Logics
• To inspect data: FO queries
• To capture system dynamics: temporal

modalities
• To track the evolution of objects: FO

quantification across states
• Example: It is always the case that every

order is eventually either cancelled or
paid and then delivered

41

Problem Dimensions
Data

component
Relational

DB
Description

logic KB
OBDA system Inconsistency

tolerant KB
…

Process
component

condition-
action rules

ECA-like
rules

Golog
program

…

Task
modeling

Conditional
effects

Add/delete
assertions

Logic  
programs

…

External
inputs

None External
services

Input DB Fixed input …

Network
topology

Single
orchestrator

Full mesh Connected,
fixed graph

…

Interaction
mechanism

None Synchronous Asynchronous
and ordered

…

42

Declarative Distributed Computing
Distributed, data-centric computing  

with extensions of Datalog
• Pushed the renaissance of Datalog [Loo et al, 2009]

[Hellerstein, 2010]
• Compares well with standard approaches [Loo et al,

2005]
• Many applications: distributed query processing,

distributed business processes, web data
management, routing algorithms, software-defined
networking, …

43

Declarative Distributed Systems
(DDS)

44

We consider fixed,
connected graphs

input

transport

state

D2C
program

Declarative Distributed Systems
(DDS)

45

D2C Programs
• Datalog programs extended with

• non-determinism: choice construct  
[Saccà and Zaniolo, 1990]

• time: prev construct to refer to the previous state
location: @ construct to refer the sender/receiver nodes

• Stable model semantics

• Each node has initial knowledge about its neighbors, and
starts with a given state DB

• Input relations are read-only, and may inject fresh data
from an infinite data domain (strings, pure names, …)

46

Node Reactive Behavior
Whenever a node receives (a set of) incoming
messages, it performs a transition:

1. Incoming messages form the new transport DB
2. The current input DB is incorporated
3. Stable models are computed
4. The node nondeterministically evolves by

updating its state and transport with the content
of one of the stable models

5. The messages contained in the newly obtained
transport DB are sent to the destination nodes

47

Execution Semantics
Relational transition systems with node-indexed databases 
  
Successors constructed considering all possible input
DBs and all possible internal choices of nodes

…

…
…

…48

Sources of Infinity

…

…
…

…
49

Sources of Infinity

…

…
…

…
50

Infinite-branching  
due to external input

Sources of Infinity

…

…
…

…
51

Runs visiting infinitely many DBs  
due to usage of external input

Pure Declarative Semantics
• Runs of closed DDS can be simulated using standard

ASP solvers
• D2C programs are compiled into Datalog by

• Transforming @ into an additional predicate argument
• Priming relations for simulating prev
• Transforming transport predicates into send/receive

predicates
• Additional rules for causality via vector clocks
• Additional rules for the semantics of the communication

model
52

Classes
synchronous
global clock

asynchronous ordered
interleaving semantics

closed
no input

finite-state  
transition system

infinite-state  
transition system

interactive
continuous

input

infinite-state  
transition system

infinite-state  
transition system

53

Classes
synchronous
global clock

asynchronous ordered
interleaving semantics

closed
no input

finite-state
transition system

infinite-state  
transition system

interactive
continuous

input

infinite-state  
transition system

infinite-state  
transition system

54

Example
Construction of a rooted spanning tree of the

network

• State schema: keeps neighbors and parent
• Transport schema: asks neighbor to become a

child
55

Example
• When multiple neighbors request to join, pick one

as a parent if you don’t already have one:
parent(P) if choice(X,P), join@X,  
 prev not parent(_).

• If you have just joined the tree, flood the join
request to neighbors (the parent will ignore it):

 join@N if parent(_), neighbor(N),  
 prev not parent(_).

• Parent information is kept:
parent(P) if prev parent(P).

56

Another Example

57

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer

Another Example

58

available(B,T) if chkWare@self,  
 newItem(B,T).

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer

Another Example

59

inCat(T) if available(_,T).

 reply@C(yes) if askAv@C(T),  
 inCat(T).

 reply@C(no) if askAv@C(T),  
 not inCat(T).

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer

Domain-specific properties: CTL-FO or LTL-FO
with active domain quantification
• Maintain:
• Broadcast:

Generic properties: convergence
• Check whether the system  

always/sometimes reaches quiescence with
some/all nodes in a non-faulty state

Interesting Questions

G(8x.(9n.R@n(~x)) ! F8n0
.R@n

0(~x))

G(8n, p.Parent@n(p) ! GParent@n(p))

60

Hate and Love
Act 3

61

No injection of data from the external world:
• system inherently finite-state
• FO: just a nice “surface syntax”
• “direct” usage of conventional model

checking techniques

Closed DDS:
the “Easy” Case

62

Still, convergence is PSPACE-hard,
without any assumption on the
network topology:
1. Elect a leader
2. Construct a tree rooted in the

leader
3. Linearize the tree
4. Compute a corridor tiling problem

Closed DDS:
the “Easy” Case

63

Interactive DDS:
the Hard Case

64

A node is computing machine
with a finite-state control process

and an unbounded memory.  
So what is it?

A Turing machine
I.e., You are doomed to
undecidability, even for

propositional reachability!

Interactive DDS:
the Hard Case

65

A node is computing machine
with a finite-state control process

and an unbounded memory.  
So what is it?

A Turing machine
I.e., You are doomed to
undecidability, even for

propositional reachability!

Size-Boundedness
Intuition: put a pre-defined bound on the DB size

• Extensively studied over the last years - cf. ACSI
project (under the name of “state-boundedness”)

• In general, the resulting transition system is still
infinite-state (even when all relations are 1-
bounded)

• In DDS we can selectively bound state, transport,
input!

66

Does Size-Boundedness Help?
Interactive DDS, linear-time case

input
bounded

state/transport bounded

N/Y Y/N Y/Y

N
convergence
undecidable

model
checking
FO-LTL

undecidableY

67

Reasons for Undecidability
(State Unbounded)

Simulation of a 2-counter Minsky machine
• Single node with 2 unary relations C1 and C2
• 1-bounded, single unary input relation New
• Increment counter1:

• check whether New contains an object not in C1
• if not, enter into an error state
• if so, insert it in C1

• Decrement counter1: pick an object in C1 and remove it
• Test counter1 for zero: check that C1 is empty

68

New

C1

C1

Reasons for Undecidability
(State/Transport/Input Bounded)

• Take a DDS with:
• a single node
• two unary, 1-bounded relations: one for input, one for state
• a D2C program that just overwrites the state with the input

• It generates all infinite data words over the infinite data domain
• Satisfiability of LTL with freeze quantifier is undecidable [Demri

and Lazic, 2006], and can be encoded as FO-LTL model
checking over this DDS

• Undecidability comes from the extreme power of FO
quantification across snapshots: variables can store
unbounded information!

69

FO-LTL with
Persistent Quantification

• Intuition: control the ability of the logic to quantify
across snapshots

• Only objects that persist in the active domain of
some node can be tracked

• When an object is lost, the formula trivializes to true
or false

• E.g.: “guarded” until

unibz.itunibz.it

Persistence-Preserving µ-calculus (µL
P

)
In some cases, objects maintain their identity only if they persist in the
active domain (cf. business artifacts and their IDs).

. . .
StudId : 123

. . .
StudId : 123

. . .dismiss(123) newStud()
ID() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

÷x.� ; ÷x.live(x) · �
È≠Í�(x̨) ; live(x̨) · È≠Í�(x̨)
[≠]�(x̨) ; live(x̨) · [≠]�(x̨) PDLLTL CTL

µL

µLP

µLA

µLFO

Example (“weak persistence”)
‹X .(’x.live(x) · Stud(x) æ

µY .(÷y.live(y) · Grad(x, y) ‚ (live(x) æ È≠ÍY)) · [≠]X)
Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Marco Montali Verification of Relational DCDSs PODS 2013 12 / 25

G(8s.Student(s) ! Student(s)U(Retired(s) _Graduated(s)))

70

Size-Boundedness to the Rescue
Interactive DDS, linear-time case  

with persistent quantification

input
bounded

state/transport bounded

N/Y Y/N Y/Y

N
convergence
undecidable

model checking
FO-LTL with
persistence
PSPACE-
complete

Y

71

DDS Key Properties
DDS (and other similar data-aware dynamic
systems) enjoy two key properties: they are…
• Markovian: Next state only depends on the

current state + input.  
Two states with identical node DBs are bisimilar.

• Generic: Datalog (as all query language) does
not distinguish structures which are identical
modulo uniform renaming of data objects.

—> Two isomorphic DDS snapshots are bisimilar
72

Pruning Infinite-Branching
• Consider a system snapshot and its node DBs
• Input is bounded —> only boundedly many

isomorphic types relating the input objects and
those in the DDS active domain

• Input configurations in the same isomorphic
type produce isomorphic snapshots

• Keep only one representative successor
state per isomorphic type

• The “pruned” transition system is finite-
branching and bisimilar to the original one

73

Example
• Input: single unary relation, 1-bounded
• Current state: two objects

a,b
a

b
c

de

74

Example
• Input: single unary relation, 1-bounded
• Current state: two objects

a,b
a

b
c

75

Compacting Infinite Runs
• Key observation: due to persistent quantification, the

logic is unable to distinguish local freshness from
global freshness

• So we modify the transition system construction:  
whenever we need to consider a fresh representative
object…
• … if there is an old object that can be recycled  

—> use that one
• … if not —> pick a globally fresh object

• This recycling technique preserves bisimulation!
76

Compacting Infinite Runs

• [Calvanese et al, 2013]: if the system is size-
bounded, the recycling technique reaches a
point were no new objects are needed 
—> finite-state transition system

• N.B.: the technique does not need to know
the value of the bound

77

Recap

78

Prune Recycle

Recap
• Input: interactive DDS whose node DBs are all size-

bounded
• Construct the abstract transition system that works over

isomorphic types and recycles old objects
• The abstract transition system is

• finite-state
• a faithful representation of the original one

• Use the abstract system to model check “persistent” FO-
LTL formulae using conventional techniques (PSPACE
upper bound)

79

Conclusion
Marriage between processes and data

is challenging, though necessary

• Size-boundedness is a robust condition towards
the effective verifiability of such systems
• The same results hold in by enriching the data

component (ontologies, constraints,
inconsistency-tolerance, …)

• Same formal model for execution and verification
80

Current and Future Work
• Implementations, leveraging the long-standing

literature in data management and formal verification

• Emphasis on other reasoning services: monitoring,
planning, adversarial synthesis

• Relaxations of size-boundedness, with the help of
• Parameterized verification
• Verification via underapproximation
• Conceptual conditions that hold in practice

81

Acknowledgments
All coauthors of this research,  

in particular  
 

Diego Calvanese 
Giuseppe De Giacomo  

Alin Deutsch 
Jorge Lobo  
Fabio Patrizi

82

Acknowledgments
AI*IA  
 

The AI*IA “2015 Somalvico Award” Committee

The external supporters of my nomination:  
Wil van der Aalst 

Thomas Eiter 
Munindar Singh

83

Acknowledgments

84

Paola Mello  
Diego Calvanese 

The AI group @ DISI-UNIBO 
The KRDB Group @ UNIBZ 

My colleagues in  
Ferrara, Rome, Eindhoven, Tartu, Uppsala

Acknowledgments

85

My
(unbounded)

family

