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Our Starting Point

Marrying processes and data is a must if we 
want to really understand how complex dynamic 

systems operate 

Dynamic systems of interest: 
• business processes 
• multiagent systems 
• distributed systems
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Complex Systems Lifecycle
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Formal Verification

Automated analysis  
of a formal model of the system 
against a property of interest, 

considering all possible system behaviors
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Our Thesis
Knowledge representation and  

computational logics  
 

can become a swiss-army knife to  
 

understand data-aware dynamic systems, 
and   

provide automated reasoning and verification 
capabilities along their entire lifecycle
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 Warning!
Towards this goal, I believe we have to: 

• foster cross-fertilization with related fields 
such as database theory, formal methods, 
business process management, information 
systems 

• systematically classify the sources of 
undecidability and complexity, so as to 
attack them when developing concrete tools 

• continuously validate how foundational 
results relate to practice
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Practice
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Theory
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Our Approach

1. Develop formal models for data-aware dynamic systems 

2. Show that they can capture concrete modeling languages 

3. Outline a map of (un)decidability and complexity 

4. Find robust conditions for decidability/tractability 

5. Bring them back into practice 

6. Implement proof-of-concept prototypes
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Outline: 3 Acts

1. Loneliness

2. Marriage

3. Hate and love
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Loneliness
Act 1
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The Three Pillars of Complex Systems

System

ProcessesData Resources

In AI and CS, we know a lot about each pillar!
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Information Assets
• Data: the main information source about the history 

of the domain of interest and the relevant aspects 
of the current state of affairs 

• Processes: how work is carried out in the domain 
of interest, leading to evolve data 

• Resources: humans and devices responsible for 
the execution of work units within a process

We focus on the first two aspects!16



State of the Art
• Traditional isolation between processes and data 

• Why? To attack the complexity (divide et impera) 

• AI has greatly contributed to these two aspects
• Data: knowledge bases, conceptual models, 

ontologies, ontology-based data access and 
integration, inconsistency-tolerant semantics, … 

• Processes: reasoning about actions, temporal/
dynamic logics, situation/event calculus, temporal 
reasoning, planning, verification, synthesis, …
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Application Domains
Data Process

Business 
Process 

Management

• Information system • Activities + events 
• Control-flow 

constraints 
• External inputs

Multiagent 
Systems

• Knowledge of agents 
• Institutional 

knowledge

• Speech acts 
• Creation of new 

objects 
• Interaction protocols

Distributed 
Systems

• Facts maintained by 
the system nodes

• Exchanged 
messages 

• Application-level 
inputs  

• Node computations18



Loneliness in BPM
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Data/Process Fragmentation
• A business process consists of a set of activities that 

are performed in coordination in an organizational and 
technical environment [Weske, 2007] 

• Activities change the real world
• The corresponding updates are reflected into the 

organizational information system(s) 
• Data trigger decision-making, which in turn determines 

the next steps to be taken in the process 

• Survey by Forrester [Karel et al, 2009]: lack of 
interaction between data and process experts
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Experts Dichotomy
• BPM professionals: think that data are subsidiary to 

processes, and neglect the importance of data quality 

• Master data managers: claim that data are the main 
driver for the company’s existence, and they only focus 
on data quality 

• Forrester: in 83/100 companies, no interaction at all 
between these two groups 
• This isolation propagates to languages and tools, 

which never properly account for the process-data 
connection
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Conventional Data Modeling
Focus: revelant entities, relations, static constraints 

Supplier ManufacturingProcurement/Supplier

Sales

Customer PO Line Item

Work OrderMaterial PO

*

*

spawns0..1

Material

But… how do data evolve?  
Where can we find the “state” of a purchase order? 
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Conventional Process Modeling
Focus: control-flow of activities in response to events 

But… how do activities update data?  
What is the impact of canceling an order?
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Do you like Spaghetti?
Manage 

Cancelation
ShipAssembleManage

Material POs
Decompose

Customer PO

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Activities

Process

Data

Customers Suppliers&CataloguesCustomer POs Work Orders Material POs

IT integration: difficult to manage, understand, evolve
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The Need of Conceptual Integration

• [Meyer et al, 2011]: data-process integration 
crucial to assess the value of processes and 
evaluate KPIs

• [Dumas, 2011]: data-process integration crucial to 
aggregate all relevant information, and to suitably 
inject business rules into the system 

• [Reichert, 2012]: “Process and data are just two 
sides of the same coin”
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Business Entities/Artifacts
Data-centric paradigm for process modeling
• First: elicitation of relevant business entities that are 

evolved within given organizational boundaries 
• Then: definition of the lifecycle of such entities, and 

how tasks trigger the progression within the 
lifecycle 

• Active research area, with concrete languages 
(e.g., IBM GSM, OMG CMMN)  

• Cf. EU project ACSI (completed)
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Loneliness in  
Social Commitments
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Social Commitments
Semantics for agent interaction that abstracts 
away from the internal agent implementation 
• [Castelfranchi 1995]: social commitments as 

a mediator between an individual and its 
“normative” relation with other agents 

• Extensively adopted for flexible specification 
of multiagent interaction protocols, business 
contracts, interorganizational business 
processes (cf. work by Singh et al)
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Conditional Commitments

• When condition ɸ holds, the debtor agent 
becomes committed towards the creditor 
agent to make condition ᴪ true 

• Agents change the state of affairs implicitly 
causing conditions to become true/false 

• Commitments are consequently progressed 
reflecting the normative state of the interaction

CC(debtor,creditor,ɸ,ᴪ)
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Literature Example
• Contract between Bob (seller) and Alice (customer): 

• Actions available to agents:

CC(bob,alice,item_paid,item_owned)

pay_with_cc causes item_paid 
send_by_courier causes item_owned 
deliver_manually causes item_owned

30



Literature Example
• Contract between Bob (seller) and Alice (customer): 

• Actions available to agents:

CC(bob,alice,item_paid,item_owned)

pay_with_cc causes item_paid 
send_by_courier causes item_owned 
deliver_manually causes item_owned
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Is this satisfactory???



Reality
• Multiple customers, sellers, items 

—> Many-to-many business relations established 
as instances of the same contractual commitment 

• Need of co-referencing commitment instances 
through agents and the exchanged data 
• If Bob gets paid by Alice for a laptop, then Bob is 

commitment to ensure that Alice owns that laptop

• More in general, see work by Ferrario and Guarino 
on service foundations

32



From the Literature to Reality

(At least) two fixes required [Montali et al, 2014]: 
1. Agent actions/messages must carry an explicit 

data payload (Alice pays an item with cc) 
2. Commitments and dynamics have to become 

data-aware

forall Seller S, Customer C, Item I. 
CC(S,C,Paid(C,I,S),Owned(C,I))
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Formal Verification 
The Conventional, Propositional Case

Process control-flow 
Agent behaviors/protocols

(Un)desired property
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(Un)desired property

Finite-state
transition  
system

Propositional
temporal formula|= �

Formal Verification 
The Conventional, Propositional Case

Process control-flow 
Agent behaviors/protocols
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(Un)desired property

Finite-state
transition  
system

Propositional
temporal formula|= �

Verification 
via model checking
2007 Turing award:  

Clarke, Emerson, Sifakis

Formal Verification 
The Conventional, Propositional Case

Process control-flow 
Agent behaviors/protocols
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Marriage
Act 2 37



Process+Data 
Data-aware agent behaviors/protocols

(Un)desired property

Formal Verification 
The Data-Aware Case
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(Un)desired property

First-order
temporal formula|= �

Process+Data 
Data-aware agent behaviors/protocols

Formal Verification 
The Data-Aware Case

Infinite-state, relational 
transition system [Vardi 2005]39



(Un)desired propertyInfinite-state, relational 
transition system

First-order
temporal formula|= �

?Process+Data 
Data-aware agent behaviors/protocols

Formal Verification 
The Data-Aware Case
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Why FO Temporal Logics
• To inspect data:  FO queries 
• To capture system dynamics:  temporal 

modalities 
• To track the evolution of objects: FO 

quantification across states 
• Example: It is always the case that every 

order is eventually either cancelled or 
paid and then delivered
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Problem Dimensions
Data 

component
Relational 

DB
Description 

logic KB
OBDA system Inconsistency 

tolerant KB
…

Process 
component

condition-
action rules

ECA-like 
rules

Golog 
program

…

Task 
modeling

Conditional 
effects

Add/delete 
assertions

Logic  
programs

…

External 
inputs

None External 
services

Input DB Fixed input …

Network 
topology

Single 
orchestrator

Full mesh Connected, 
fixed graph

…

Interaction 
mechanism

None Synchronous Asynchronous 
and ordered

…
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Declarative Distributed Computing
Distributed, data-centric computing  

with extensions of Datalog
• Pushed the renaissance of Datalog [Loo et al, 2009]

[Hellerstein, 2010] 
• Compares well with standard approaches [Loo et al, 

2005] 
• Many applications: distributed query processing, 

distributed business processes, web data 
management, routing algorithms, software-defined 
networking, …
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Declarative Distributed Systems 
(DDS)

44

We consider fixed,  
connected graphs



input 

transport 

state 

D2C 
program 

Declarative Distributed Systems 
(DDS)
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D2C Programs
• Datalog programs extended with 

• non-determinism: choice construct  
[Saccà and Zaniolo, 1990]  

• time: prev construct to refer to the previous state 
location: @ construct to refer the sender/receiver nodes 

• Stable model semantics 

• Each node has initial knowledge about its neighbors, and 
starts with a given state DB 

• Input relations are read-only, and may inject fresh data 
from an infinite data domain (strings, pure names, …)
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Node Reactive Behavior
Whenever a node receives (a set of) incoming 
messages, it performs a transition: 

1. Incoming messages form the new transport DB 
2. The current input DB is incorporated  
3. Stable models are computed 
4. The node nondeterministically evolves by 

updating its state and transport with the content 
of one of the stable models 

5. The messages contained in the newly obtained 
transport DB are sent to the destination nodes
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Execution Semantics
Relational transition systems with node-indexed databases 
  
Successors constructed considering all possible input 
DBs and all possible internal choices of nodes

…

…
…

…48



Sources of Infinity

…

…
…

…
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Sources of Infinity

…

…
…

…
50

Infinite-branching  
due to external input



Sources of Infinity

…

…
…

…
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Runs visiting infinitely many DBs  
due to usage of external input



Pure Declarative Semantics
• Runs of closed DDS can be simulated using standard 

ASP solvers 
• D2C programs are compiled into Datalog by 

• Transforming @ into an additional predicate argument 
• Priming relations for simulating prev
• Transforming transport predicates into send/receive 

predicates 
• Additional rules for causality via vector clocks 
• Additional rules for the semantics of the communication 

model
52



Classes
synchronous
global clock

asynchronous ordered
interleaving semantics

closed
no input

finite-state  
transition system

infinite-state  
transition system

interactive
continuous 

input

infinite-state  
transition system

infinite-state  
transition system
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Classes
synchronous
global clock

asynchronous ordered
interleaving semantics

closed
no input

finite-state 
transition system

infinite-state  
transition system

interactive
continuous 

input

infinite-state  
transition system

infinite-state  
transition system
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Example
Construction of a rooted spanning tree of the 

network

• State schema: keeps neighbors and parent 
• Transport schema: asks neighbor to become a 

child
55



Example
• When multiple neighbors request to join, pick one 

as a parent if you don’t already have one: 
parent(P) if choice(X,P), join@X,  
             prev not parent(_).  

• If you have just joined the tree, flood the join 
request to neighbors (the parent will ignore it): 

 join@N if parent(_), neighbor(N),  
           prev not parent(_). 

• Parent information is kept: 
parent(P) if prev parent(P).
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Another Example
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Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer



Another Example
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available(B,T) if chkWare@self,  
                  newItem(B,T).

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer



Another Example
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inCat(T) if available(_,T). 

 reply@C(yes) if askAv@C(T),  
                  inCat(T). 

   reply@C(no) if askAv@C(T),  
                  not inCat(T).

Warehouse manager

Seller

Customer

newItem(Barcode,Type)

available(Barcode,Type)

askAv(Type)
reply(yes/no)

chkWare

Customer



Domain-specific properties: CTL-FO or LTL-FO 
with active domain quantification
• Maintain: 
• Broadcast: 

Generic properties: convergence 
• Check whether the system  

always/sometimes reaches quiescence with 
some/all nodes in a non-faulty state

Interesting Questions

G(8x.(9n.R@n(~x)) ! F8n0
.R@n

0(~x))

G(8n, p.Parent@n(p) ! GParent@n(p))
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Hate and Love
Act 3
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No injection of data from the external world: 
• system inherently finite-state 
• FO: just a nice “surface syntax” 
• “direct” usage of conventional model 

checking techniques

Closed DDS: 
the “Easy” Case
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Still, convergence is PSPACE-hard, 
without any assumption on the 
network topology:  
1. Elect a leader 
2. Construct a tree rooted in the 

leader 
3. Linearize the tree 
4. Compute a corridor tiling problem

Closed DDS: 
the “Easy” Case
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Interactive DDS: 
the Hard Case

64

A node is computing machine 
with a finite-state control process 

and an unbounded memory.  
So what is it? 

A Turing machine
I.e., You are doomed to 
undecidability, even for 

propositional reachability!



Interactive DDS: 
the Hard Case
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A node is computing machine 
with a finite-state control process 

and an unbounded memory.  
So what is it? 

A Turing machine
I.e., You are doomed to 
undecidability, even for 

propositional reachability!



Size-Boundedness 
Intuition: put a pre-defined bound on the DB size 

• Extensively studied over the last years - cf. ACSI 
project (under the name of “state-boundedness”) 

• In general, the resulting transition system is still 
infinite-state (even when all relations are 1-
bounded) 

• In DDS we can selectively bound state, transport, 
input!
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Does Size-Boundedness Help?
Interactive DDS, linear-time case

input 
bounded

state/transport bounded

N/Y Y/N Y/Y

N
convergence  
undecidable

model 
checking  
FO-LTL 

undecidableY
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Reasons for Undecidability 
(State Unbounded)

Simulation of a 2-counter Minsky machine
• Single node with 2 unary relations C1 and C2 
• 1-bounded, single unary input relation New
• Increment counter1:  

• check whether New contains an object not in C1 
• if not, enter into an error state 
•  if so, insert it in C1 

• Decrement counter1: pick an object in C1 and remove it 
• Test counter1 for zero: check that C1 is empty

68

New

C1

C1



Reasons for Undecidability 
(State/Transport/Input Bounded)

• Take a DDS with: 
• a single node 
• two unary, 1-bounded relations: one for input, one for state 
• a D2C program that just overwrites the state with the input 

• It generates all infinite data words over the infinite data domain 
• Satisfiability of LTL with freeze quantifier is undecidable [Demri 

and Lazic, 2006], and can be encoded as FO-LTL model 
checking over this DDS 

• Undecidability comes from the extreme power of FO 
quantification across snapshots: variables can store 
unbounded information!
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FO-LTL with  
Persistent Quantification

• Intuition: control the ability of the logic to quantify 
across snapshots 

• Only objects that persist in the active domain of 
some node can be tracked 

• When an object is lost, the formula trivializes to true 
or false 

• E.g.: “guarded” until

unibz.itunibz.it

Persistence-Preserving µ-calculus (µL
P

)
In some cases, objects maintain their identity only if they persist in the
active domain (cf. business artifacts and their IDs).

. . .
StudId : 123

. . .
StudId : 123

. . .dismiss(123) newStud()
ID() = 123

µLP restricts µLA to quantification over persisting
objects only, i.e., objects that continue to be live.

÷x.� ; ÷x.live(x) · �
È≠Í�(x̨) ; live(x̨) · È≠Í�(x̨)
[≠]�(x̨) ; live(x̨) · [≠]�(x̨) PDLLTL CTL

µL

µLP

µLA

µLFO

Example (“weak persistence”)
‹X .(’x.live(x) · Stud(x) æ

µY .(÷y.live(y) · Grad(x, y) ‚ (live(x) æ È≠ÍY )) · [≠]X)
Along every path, it is always true, for each student x, that there exists an
evolution in which either x does not persist, or she eventually graduates.

Marco Montali Verification of Relational DCDSs PODS 2013 12 / 25

G(8s.Student(s) ! Student(s)U(Retired(s) _Graduated(s)))
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Size-Boundedness to the Rescue
Interactive DDS, linear-time case  

with persistent quantification

input 
bounded

state/transport bounded

N/Y Y/N Y/Y

N
convergence  
undecidable

model checking  
FO-LTL with 
persistence 
PSPACE-
complete

Y
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DDS Key Properties
DDS (and other similar data-aware dynamic 
systems) enjoy two key properties: they are… 
• Markovian: Next state only depends on the 

current state + input.  
Two states with identical node DBs are bisimilar.

• Generic: Datalog (as all query language) does 
not distinguish structures which are identical 
modulo uniform renaming of data objects. 

—> Two isomorphic DDS snapshots are bisimilar
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Pruning Infinite-Branching
• Consider a system snapshot and its node DBs 
• Input is bounded —> only boundedly many 

isomorphic types relating the input objects and 
those in the DDS active domain 

• Input configurations in the same isomorphic 
type produce isomorphic snapshots 

• Keep only one representative successor 
state per isomorphic type

• The “pruned” transition system is finite-
branching and bisimilar to the original one
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Example
• Input: single unary relation, 1-bounded 
• Current state: two objects

a,b
a

b
c

de
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Example
• Input: single unary relation, 1-bounded 
• Current state: two objects

a,b
a

b
c
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Compacting Infinite Runs
• Key observation: due to persistent quantification, the 

logic is unable to distinguish local freshness from 
global freshness

• So we modify the transition system construction:  
whenever we need to consider a fresh representative 
object… 
• … if there is an old object that can be recycled  

—> use that one 
• … if not  —> pick a globally fresh object 

• This recycling technique preserves bisimulation!
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Compacting Infinite Runs

• [Calvanese et al, 2013]: if the system is size-
bounded, the recycling technique reaches a 
point were no new objects are needed 
—> finite-state transition system

• N.B.: the technique does not need to know 
the value of the bound

77



Recap

78

Prune Recycle



Recap
• Input: interactive DDS whose node DBs are all size-

bounded 
• Construct the abstract transition system that works over 

isomorphic types and recycles old objects 
• The abstract transition system is 

• finite-state 
• a faithful representation of the original one 

• Use the abstract system to model check “persistent” FO-
LTL formulae using conventional techniques (PSPACE 
upper bound)
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Conclusion
Marriage between processes and data 

is challenging, though necessary

• Size-boundedness is a robust condition towards 
the effective verifiability of such systems 
• The same results hold in by enriching the data 

component (ontologies, constraints, 
inconsistency-tolerance, …) 

• Same formal model for execution and verification
80



Current and Future Work
• Implementations, leveraging the long-standing 

literature in data management and formal verification 

• Emphasis on other reasoning services: monitoring, 
planning, adversarial synthesis 

• Relaxations of size-boundedness, with the help of 
• Parameterized verification 
• Verification via underapproximation 
• Conceptual conditions that hold in practice
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